
norther.org

Tammi Application Framework

Technical Specification

Version 6.1.1

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Revision History
Date Version Description Author

12.12.02 1.0.0 Initial version imp

02.01.03 1.0.1 Packages and configuration added imp

03.01.03 1.0.2 Implementation added imp

08.01.03 1.0.3 Revised version map

20.01.03 1.0.4 Minor changes from build 31 imp

03.07.03 1.1.0 Updated for release 1.1 imp

05.07.03 1.1.1 Clarification of concepts imp

31.08.03 1.1.2 Swing changed to JFC imp

10.10.03 1.1.3 Some typos corrected imp

03.11.03 2.0.0 Release 1.1 renumbered to 2.0 imp

05.01.04 2.1.0 Updated for release 2.1 imp

05.01.05 2.2.0 Updated for release 2.2 imp

11.01.05 2.3.0 Updated for release 2.3 imp

07.06.05 3.0.0 Updated for release 3.0 imp

10.08.09 6.1.0 Updated for release 6.1 imp

01.12.09 6.1.1 Updated for release 6.1.4 imp

Norther 2009 2 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Table of Contents
1 Introduction...6

1.1 Purpose...6

1.2 Scope...6

1.3 Definitions, Acronyms and Abbreviations...6

1.4 References..7

1.5 Overview...8

2 Installation Instructions...9

2.1 Framework..9

2.1.1 Installation Files..9
2.1.2 Directory Structure..9

2.2 Applications...11

2.2.1 Installation Files..11
2.2.2 Directory Structure..11

3 Design Patterns...12

3.1 Component Model...12

3.2 JMX™ Architecture..12

3.2.1 Instrumentation Level..13
3.2.2 Agent Level...14
3.2.3 Manager Level...14
3.2.4 Future Concepts...15

3.3 Deployment...15

3.4 Dynamic Configuration..16

3.4.1 Property Files..17
3.4.2 Bean Scripting Framework..18
3.4.3 DynamicJava...18
3.4.4 Management Interface..18

3.5 User Interface..18

3.6 Filter Chain..19

3.7 Component Lifecycle...21

3.7.1 Lifecycle Interfaces..22

3.8 Persistence Layer..23

3.8.1 Persistence Broker...24
3.8.2 Dynamic Mapping..25

4 Available Packages..26

4.1 Acorn Packages..26

4.2 Core Packages..26

4.2.1 Base Package..26
4.2.2 Cache Package..27
4.2.3 Config Package..28
4.2.4 Converter Package...29
4.2.5 External Package...30

Norther 2009 3 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

4.2.6 Factory Package...30
4.2.7 IO Package..31
4.2.8 Locale Package..32
4.2.9 Logger Package...32
4.2.10 Mail Package...32
4.2.11 Model package...33
4.2.12 Monitor Package...33
4.2.13 Naming Package..33
4.2.14 Net Package..33
4.2.15 Realm Package..33
4.2.16 Scripter Package..33
4.2.17 Security package..33
4.2.18 Startup Package...33
4.2.19 Thread Package...33
4.2.20 Util Package..34
4.2.21 RT Package...34
4.2.22 XML Package...34

4.3 Root Packages..35

4.3.1 DB Package...35
4.3.2 Locale Package..35
4.3.3 OJB Package...35
4.3.4 Realm Package..35

4.4 Leaf Packages..35

4.4.1 JFC Package..35

4.5 Spray Packages..35

4.5.1 Authenticator Package..35
4.5.2 Connector Package...36
4.5.3 Engine Package...37
4.5.4 Filter Package..37
4.5.5 Freemarker Package...38
4.5.6 Loader Package...38
4.5.7 Media Package...38
4.5.8 Protocol Package..39
4.5.9 Remote Package..39
4.5.10 DB Package...39
4.5.11 Servlet Package...39
4.5.12 Session Package..39
4.5.13 Template Package..39
4.5.14 Terminal Package...39
4.5.15 Velocity Package..39

4.6 Sprig Packages...40

4.6.1 Report Package..40
4.6.2 Chart Package...40
4.6.3 JFree Package..40
4.6.4 Jasper Package..40

4.7 Third Party Libraries..40

5 Implementation Guidelines...41

5.1 Coding Standard...41

5.2 Implementing MBeans...41

5.2.1 Standard MBeans...41

Norther 2009 4 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

5.2.2 Referable MBeans..44
5.2.3 Adaptable MBeans..46
5.2.4 Executable MBeans..47
5.2.5 Dynamic MBeans...47

5.3 Identifying MBeans...51

5.3.1 Domain Name...51
5.3.2 Key Property List...51
5.3.3 Pattern Matching..52

5.4 Accessing MBeans...52

5.4.1 From Objects...52
5.4.2 From Scripts and Templates..53

5.5 Handling URLs..53

5.5.1 Relative vs. Absolute URLs..53
5.5.2 Context Path...54
5.5.3 Path Info...54
5.5.4 Object Parameters...54
5.5.5 Query String...54
5.5.6 Redirection..54
5.5.7 Links..55

5.6 Character Encoding...55

5.6.1 URL Encoding..55
5.6.2 Request Encoding..56
5.6.3 Response Encoding..56
5.6.4 Template Encoding...56
5.6.5 Resource Encoding...56

6 Configuration Notes...57

6.1 Property Files...57

6.2 BSF Scripts..57

6.3 Templates..57

6.4 Startup Sample..58

6.4.1 HttpFilter..59
6.4.2 TerminalFilter..60
6.4.3 ContextToolFilter...60
6.4.4 HostFilter..60
6.4.5 LocaleFilter...60
6.4.6 ExceptionFilter...60
6.4.7 ServiceFilter..60
6.4.8 MediaContentFilter...60
6.4.9 CGIBinFilter..60
6.4.10 HttpFormAuthFilter...61
6.4.11 MediaContentKeyFilter..61
6.4.12 TaskFilter..61
6.4.13 SkinFilter..61
6.4.14 FormFilter...61
6.4.15 FlowFilter..61
6.4.16 LayoutFilter...61
6.4.17 ClosingFilter..62

Norther 2009 5 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

1 Introduction
The Tammi Application Framework is a Java™ component based development
framework and run-time container for applications supporting web browsers,
mobile terminals and/or JFC based user interfaces. Tammi application
components can implement independent business logic themselves or act as
proxies to native libraries, remote programs and other kinds of manageable
resources.

1.1 Purpose
This document contains a technical specification of Tammi. The on-line manual of
Tammi supplements this document by providing a summary of features and
illustrative examples on how to apply the framework. In addition, API
documentation of Tammi packages and classes provide more detailed information.

1.2 Scope
The scope of this document is to describe design, implementation, configuration
and other technical issues on which Tammi itself as well as its applications and
derivatives are based.

1.3 Definitions, Acronyms and Abbreviations
Term Explanation

BSF Bean Scripting Framework

CGI Common Gateway Interface

DOM Document Object Model

DTD Document Type Definition

EJB Enterprise Java Bean

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JNDI Java™ Naming and Directory Interface

JMX Java™ Management Extensions

JRE Java™ Runtime Environment

JSP Java™ Server Pages

JVM Java™ Virtual Machine

MBean Managed Bean (a specific Java class)

MVC Model – View – Controller design pattern

OJB ObJect Relational Bridge

RI Reference Implementation

RMI Remote Method Invocation

SAX Simple API for XML

URI Uniform Resource Identifier

URL Uniform Resource Locator

WUI Web User Interface

Norther 2009 6 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Term Explanation

XML Extensible Markup Language

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

1.4 References
[Ant] Name

Link
Apache Ant Build Tool

http://jakarta.apache.org/ant.index.html

[Apache] Name
Link

The Apache Software Foundation
http://www.apache.org/index.html

[BSF] Name
Link

Apache Jakarta Bean Scripting Framework
http://jakarta.apache.org/bsf/index.html

[Castor] Name
Link

 Castor XML Binding Framework
http://castor.exolab.org/index.html

[CCA] Name
Link

Common Component Architecture Forum
http://www.cca-forum.org/index.html

[Coding] Name
Link

Java Coding Standard for Tammi
http://tammi.sourceforge.net/docs/spec/coding.pdf

[Coms] Name
Link

Apache Jakarta Commons
http://jakarta.apache.org/commons/index.html

[CPJ] Name
Link

Concurrent Programming in Java
http://gee.cs.oswego.edu/index.html

[DJava] Name
Link

DynamicJava Interpreter
http://www-sop.inria.fr/koala/djava/index.html

[Flex] Name
Link

Flex.org – Rich Internet Applications
http://flex.org/

[FM] Name
Link

<FreeMarker>
http://freemarker.org/index.html

[Groovy] Name
Link

An agile dynamic language for the Java Platform
http://groovy.codehaus.org/

[HSQL] Name
Link

HSQL Database Engine
http://hsqldb.sourceforge.net/index.html

[JAF] Name
Link

JavaBeans™ Activation Framework
http://java.sun.com/products/javabeans/glasgow/jaf.html

[Jasper] Name
Link

Jasper Reports
http://jasperreports.sourceforge.net/index.html

[Java] Name
Link

Java™ 2 Platform, Standard Edition
http://java.sun.com/j2se/index.html

[JFree] Name
Link

JFree Charts and Reports
http://www.jfree.org/

[Jini] Name
Link

Jini™ Network Technology
http://www.sun.com/jini/index.html

Norther 2009 7 (62)

http://jakarta.apache.org/ant.index.html
http://www.sun.com/jini/index.html
http://www.jfree.org/
http://java.sun.com/j2se/index.html
http://jasperreports.sourceforge.net/index.html
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://hsqldb.sourceforge.net/index.html
http://groovy.codehaus.org/
http://freemarker.org/index.html
http://flex.org/
http://www-sop.inria.fr/koala/djava/index.html
http://gee.cs.oswego.edu/index.html
http://jakarta.apache.org/commons/index.html
http://tammi.sourceforge.net/docs/spec/coding.pdf
http://www.cca-forum.org/index.html
http://castor.exolab.org/index.html
http://jakarta.apache.org/bsf/index.html
http://www.apache.org/index.html

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

[JMail] Name
Link

JavaMail™ API
http://java.sun.com/products/javamail/index.html

[JMX] Name
Link

Java™ Management Extensions (JMX™)
http://jcp.org/aboutJava/communityprocess/final/jsr003/

[JMXSpec] Name
Link

JMX™ Instrumentation and Agent Specification
http://java.sun.com/aboutJava/communityprocess/final/jsr003

[JSP] Name
Link

JavaServer Pages™
http://java.sun.com/products/jsp/index.html

[Log4J] Name
Link

Apache Jakarta Log4J Logging Package
http://jakarta.apache.org/log4j/docs/index.html

[OJB] Name
Link

Apache DB Object/Relational Bridge
http://db.apache.org/ojb/index.html

[Servlet] Name
Link

Java™ Servlet Technology
http://java.sun.com/products/servlet/index.html

[Tomcat] Name
Link

Apache Jakarta Tomcat Servlet Container
http://jakarta.apache.org/tomcat/index.html

[Turbine] Name
Link

Apache Jakarta Turbine Servlet Framework
http://jakarta.apache.org/turbine/index.html

[Velocity] Name
Link

Apache Jakarta Velocity Template Engine
http://jakarta.apache.org/velocity/index.html

1.5 Overview
The rest of the document provides a technical description of Tammi including
installation instructions, applied design patterns, available packages,
implementation guidelines and configuration notes.

Norther 2009 8 (62)

http://jakarta.apache.org/velocity/index.html
http://jakarta.apache.org/turbine/index.html
http://jakarta.apache.org/tomcat/index.html
http://java.sun.com/products/servlet/index.html
http://db.apache.org/ojb/index.html
http://jakarta.apache.org/log4j/docs/index.html
http://java.sun.com/products/jsp/index.html
http://java.sun.com/aboutJava/communityprocess/final/jsr003
http://jcp.org/aboutJava/communityprocess/final/jsr003/
http://java.sun.com/products/javamail/index.html

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

2 Installation Instructions
Tammi provides a run-time container for executing Java components installed
under Tammi as plug-in applications. The framework itself may be installed as a
web application running as a filter chain or a servlet under some servlet container
[Servlet], or it may be installed as a stand-alone system. The stand-alone system
can be configured to provide HTTP and HTTPS services via socket connectors.

2.1 Framework

2.1.1 Installation Files
The stand-alone installation is packaged into one deployment file, named “tammi-
<version>.<extension>”, which can be extracted to a desired location in the
directory hierarchy. The extension is either “zip” or “tar.gz” depending on the
corresponding compression method.

The web application installation is packaged into one web archive file, named
“tammi.war”, which can be located in the web application directory of the servlet
container to be applied.

2.1.2 Directory Structure
The directory structure and contents of the framework installation without
documentation are presented below. Note that all subdirectories of components
are not presented. Note also that most directories may have been embedded into
jar archives.

Norther 2009 9 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Example
/bin -> commands, binaries and native libraries
/mmd -> static multimedia data
..../default
......../tammi
............/spray
................/css
................/image
................/script
/etc -> configuration directories
..../config -> property files
......../tammi
............/core
............/flex
............/gate
............/root
............/spray
............/sprig
............/manual
..../script -> run-time scripts
..../security -> key stores and certificates
..../start -> startup scripts
......../tammi
............/core
............/root
............/leaf
............/spray
............/sprig
............/manual
..../stop -> shutdown scripts
..../test -> test scripts
/lib -> jar archives of Java libraries
/lic -> license files and copyright notices
/res -> localized resources
/tpl -> markup templates
..../default

The directories may contain subdirectories defining namespaces for component
files included in them. The namespace of the framework itself is “tammi”.

After installation, the framework can be started with the default configuration by
running the shell commands in the “startup.sh” file in the “bin” directory under
Unix/Linux, or by running the batch commands in the “startup.bat” file under
Windows. The Java JRE version 1.5 or newer must have been installed and
available (version 1.4 can be applied if Java™ Management Extensions [JMX] is
installed separately).

The “initd/tammid_<os>_x32.sh” shell script can be applied to install the
framework as a Unix daemon. Correspondingly, the “tammis_w32.exe” executable
installs the framework as a Windows service. Available options are displayed with
the command line option /?.

The default ports are http://localhost:8080 and https://localhost:8443. The user
name and password for management are “admin” and “admin” correspondingly.

Norther 2009 10 (62)

https://localhost:8443/
http://localhost:8080/

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

2.2 Applications

2.2.1 Installation Files
By default, applications to be plugged into Tammi are packaged into a
deployment file, named “tammi-<name>-<version>.<extension>”. The
extension is either “zip” or “tar.gz” depending on the corresponding compression
method. The deployment file may be extracted either to the same installation root
directory as the framework, or to its own directory next to the framework
directory.

2.2.2 Directory Structure
The directory structure and contents of the Hello application installation are
presented below. It applies the directory structure of the framework but uses its
application name “hello” as its namespace within the directory hierarchy. Other
applications may utilize more directories depending on their requirements. After
installation, the framework must be restarted to load the plug-in application.

Example
/mmd -> static multimedia data
..../default
......../hello
............/image
/etc -> configuration directories
..../config -> property files
......../hello
..../start -> startup scripts
......../hello
/res -> localized resources
/tpl -> markup templates

Norther 2009 11 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

3 Design Patterns
Tammi's architecture is compliant with Java™ Management Extensions
[JMXSpec]. Applications are formed by independent components plugged into
Tammi, and configured dynamically during startup and run-time with scripting
engines, such as DynamicJava [Djava] or Groovy [Groovy]. Applications follow
the Model – View – Controller (MVC) design pattern separating presentation from
content. The presentation is implemented as templates in some markup
language, like HTML, interacting with content producers through context tools
within template contexts. A template engine, such as Velocity [Velocity], parses
the templates composing the web user interface (WUI). A filter chain mechanism
[Servlet] controls the process. Stand-alone applications may support JFC based
user interfaces as well.

Tammi's component model supports integration of versatile Java technologies,
open source packages and existing applications into a consistent development
framework of professional quality. A specific objective is to support transition of
legacy systems in the engineering domain to component-based solutions
smoothly and efficiently by applying the proxy pattern to avoid complete rewrites
of the code base.

3.1 Component Model
The Common Component Architecture [CCA] Forum is a group of researchers
defining a component architecture for high performance computing. Tammi does
not conform to CCA but is committed to the same principles and goals, listed
below, in the engineering domain.

Like scientific applications, applications in the engineering domain are also often
assembled from large blocks of code into monoliths. Software reuse is obtained
by linking with software libraries obtained either from third parties, or created in
house, from scratch. A major disadvantage of this approach is that software
boundaries (function interfaces and global symbols) are frequently not well
thought out. This can lead to internal code dependencies making the monolithic
application difficult to modify and maintain.

Components are designed with standard, clearly defined interfaces, which tend to
protect them from changes in the software environment outside their boundaries.
Applications are composed at run-time from components selected from a
component pool. Because components communicate only through well-defined
interfaces, when an application needs to be modified, a single component can be
modified (or exchanged for a similar component), without fear of disturbing the
other components making up the application.

The framework provides the glue that binds components together. It is used to
compose separate components from a component pool into a running application.
It allows components to be linked together and to make calls on specific
component interfaces. Additionally, the framework can provide information about
the run-time environment.

3.2 JMX™ Architecture
Application components in Tammi's architecture share common services and
communicate with each other through a centralized object registry server. The
components may be distributed in the network when applicable, but they can as
well reside on the local host.

Norther 2009 12 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

The architecture is implemented on top of JMX™ [JMX]. The JMX architecture is
divided into three levels [JMXSpec]:

• Instrumentation level

• Agent level

• Manager level

3.2.1 Instrumentation Level
The instrumentation level provides a specification for implementing manageable
resources. A manageable resource can be an application, an implementation of a
service, a device, a user, etc. It is developed in Java, or offers a Java wrapper,
and has been instrumented so that it can be managed by JMX-compliant
applications.

The instrumentation of a given resource is provided by one or more Managed
Beans, or MBeans, which are Java objects implementing a specific interface
describing the attributes and operations they provide for accessing the resources
behind them. The instrumentation of a resource allows it to be manageable
through the agent level.

MBeans do not require knowledge of the agent with which they operate. Products
can be made manageable without having to understand management systems.
Existing products can provide proxy MBeans wrapping the original functionality
making existing resources manageable with relatively light effort.

Norther 2009 13 (62)

Figure 3.1 Relationships between the components of the JXM architecture [JMXSpec]

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

The instrumentation level specifies also a notification mechanism. This allows
MBeans to generate and propagate notification events to components of the other
levels.

The basic functionality of the Tammi framework is implemented as MBeans.
Third-party libraries has been integrated to the framework through proxy MBeans.
Correspondingly, new application components may be implemented directly as
MBeans, or they can be integrated through a proxy layer. A generic adapter
MBean may be applied to introduce any Java class to the framework without
modifying the code of the original class.

3.2.2 Agent Level
The agent level provides a specification for implementing agents. Management
agents directly control the resources and make them available to management
applications. Agents are usually located on the same host as the resources they
control, although it is not a requirement.

This level builds upon and makes use of the instrumentation level, in order to
define a standardized agent to manage resources. The agent consists of an MBean
server and a set of services for handling MBeans. In addition, an agent will need
at least one communications adapter or connector.

An agent does not need to know which resources it will serve: any manageable
resource can use any agent that offers the services it requires. Managers access
an agent’s MBeans and use the provided services through a protocol adapter or
connector. Agents do not require knowledge of the remote management
applications that use them. Agents can be implemented without having to
understand the semantics of the manageable resources, or the functions of the
management applications.

Tammi can be configured to create a new JMX agent to serve MBeans of its
applications, or to register itself to the MBean Server of an existing agent.

3.2.3 Manager Level
The manager level provides the interfaces for implementing managers. This level
defines management interfaces and components that can operate on agents or
hierarchies of agents. These components can:

• Provide an interface for management applications to interact transparently with
an agent and its manageable resources through a connector

• Expose a management view of an agent and its MBeans by mapping their
semantic meaning into the constructs of a data-rich protocol (for example HTML
or SNMP)

• Distribute management information from high-level management platforms to
numerous agents

• Consolidate management information coming from numerous agents into
logical views that are relevant to the end user’s business operations

• Provide security

The manager level contains client browsers and integrated client platforms using
the functionality, information and other resources provided by Tammi
applications.

Norther 2009 14 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

3.2.4 Future Concepts
The APIs of the JMX specification can implement flexible and dynamic solutions,
which can leverage other emerging technologies. For example, JMX solutions can
use lookup and discovery services and protocols such as Jini™ connection
technology [Jini], Universal Plug’n’Play (Upnp), and the Service Location Protocol
(SLP).

The JMX Remote API standardizes a solution for exporting JMX API
instrumentation to remote applications. The remote API will provide a mechanism
for remote access that is very similar to the local client API. This means that
remote clients can call the familiar MBeanServer operations and can register for
MBean notifications.

Jini can go a step further providing spontaneous discovery of resources and
services on the network, which are then managed by through a JMX application.

3.3 Deployment
Tammi is running on an agent server connected optionally to a separate web
server through appropriate protocol connectors. Clients can access Tammi either
directly through an HTTP connector or via the separate web server. Stand-alone
clients can connect to Tammi through a graphical user interface.

An optional database server can be accessed through database service brokers
available for vendor specific database implementations.

Application components implement their manageable resources as MBeans
registered to the MBean server of the JXM agent. Applications can reside in the
same JVM as Tammi, as local applications on the same host, or as remote
applications on a remote server. In the two latter cases, the application
components are implemented as proxy MBeans for accessing remote application
resources.

Norther 2009 15 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

3.4 Dynamic Configuration
Tammi starts up as an empty run-time container that is configured for a specific
application and purpose with configuration scripts. The configuration model has
been adopted from that of the servlet technology [Servlet], by extending it to
cover all aspects of internal components of Tammi, applications plugged into
Tammi during startup, and run-time configuration of both new and loaded
components.

The goal of dynamic configuration is to exploit efficiently common functionality
provided by the framework without a need to develop, build and maintain several
versions of the framework. This is especially useful in application domains where
requirements, specifications, applications and components are changing
frequently, but the overall architecture remains the same.

Extensive dynamic configuration sets specific requirements for configuration
management. It must be capable of changing almost any component property
both during startup and run-time. Correspondingly, component implementations
must accept configuration changes during run-time. Tammi supports property
files and BSF scripts for configuration. Applications follow the MVC design pattern
to support independent configuration of user interface templates, too.

Norther 2009 16 (62)

Figure 3.2 The deployment diagram

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

3.4.1 Property Files
A Java property file specifies a set of permanent properties represented as key –
value pairs. Tammi supports loading of property files to Configuration objects,
which perform desired type conversions and maintain the properties during run-
time. Configurator can treat the properties loaded to Configuration as attributes
of another MBean and set their values through the exposed MBean interface of
the corresponding MBean.

Configurables extending the Configurable class inherit MBean specific property file
support, but implementations must handle the effect of changes in property
values to their behavior.

Norther 2009 17 (62)

Figure 3.3 The configuration diagram

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

3.4.2 Bean Scripting Framework
The Bean Scripting Framework [BSF] is architecture for incorporating scripting
into, and enabling scripting against, Java applications and applets. Using BSF, an
application can use scripting, and become scriptable, against any BSF-supported
language. When BSF supports additional languages, the application will
automatically support the additional languages. Scripts in any BSF-supported
language can be run directly on the command line as well.

The list of scripting languages supported by BSF is ever growing. Both Java-
implemented languages (such as Netscape Rhino and Jacl) as well as non-Java
ones such as Tcl and Perl will be supported. On Win32 platforms, active scripting
languages including VBScript and JScript are supported. Scripting language
support is provided by language specific BSFEngine interface implementations.

BSF is integrated in Tammi through Scripter. The recommended scripting
language is DynamicJava [DJava].

3.4.3 DynamicJava
DynamicJava [DJava] is a Java source interpreter. It executes programs written in
Java, like described in the Java Language Specification, in addition with scripting
features.

DynamicJava is suitable for loading different application configurations to Tammi
both during startup and run-time. Tammi processes automatically any
DynamicJava scripts located in its startup and shutdown directories. However,
configuration scripts should not be used for programming new functionality for
application components.

3.4.4 Management Interface
The management interface of Tammi provides a user interface supporting
operations with which to create or unregister any MBean. The interface lists
registered MBeans, which can be modified by changing values of their public
fields. The interface allows also invoking of public methods of MBeans. All primary
data types and data types with registered CustomConverter are supported.

Saving of changes made through the management interface is currently not
supported.

3.5 User Interface
The user interface of plug-in applications is based on the page-building model of
Turbine [Turbine]. The user interface page is typically formed by a static portion
described with a markup language in a user interface template, and a dynamic
portion provided by content producer components of the application.

The selection of the template for a client request is based on a template
parameter included in the request URL or the body of the request. If such a
parameter is not specified or not found, the default template will be applied.
Templates are parsed by TemplateEngines. The recommended template engine is
Velocity [Velocity], but FreeMarker [FM] and JSP [JSP] are also supported.

The content producers place the dynamic portion of the user interface page into a
Context object, the contents of which are made available to template engines
before they parse the template. Actions, implementing also the Task interface,
may be applied to load content into the context, as actions are activated before
builders. Applications may extend the Action class to customize content
generation.

Norther 2009 18 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Templates may form nested hierarchies supporting building of more complicated
user interfaces. The layout model of Turbine is based on a layout template
specifying the layout for a target template and any number of additional
templates. The target template provides the actual request specific content, or
screen, within the page. Additional templates provide navigation support or other
generic content within the page.

The target template is typically formed by one or more form templates, further
consisting of input and output control templates.

3.6 Filter Chain
Tammi applications follow the MVC design pattern, which aims at separating
presentation from content within applications:

• Model – content producer components implemented as MBeans

• View – one of the template engines parsing a user interface template

• Controller – a filter chain selecting the template and content producers for each
of the client requests

Pipe describes a chain of Filters that should be processed sequentially. Each
Connector receiving client requests is connected to one pipe. The connector
passes the flow of requests to the pipe, and it is required that a filter somewhere
in the pipe (often the last one) must process the request and create the
corresponding response, rather than trying to pass the request on to the next
filter in the chain [Servlet].

Norther 2009 19 (62)

Figure 3.4 The page layout model [Turbine]

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

The request flow proceeds via calls to the doFilter method of pipes and filters. The
method has three parameters: a request, a response and a chain. The request
and response are implementations of the corresponding interfaces in the
javax.servlet package. The chain is an implementation of the HttpFilterChain
interface extending the javax.servlet.FilterChain interface. It carries information
about the request flow itself between pipes and filters. Filters can get a reference
to the current pipe through it and override the original request and response
objects by passing their own implementations to the chain. Both Pipe and Filter
interfaces, implemented by pipes and filters correspondingly, extend the
javax.servlet.Filter interface.

Other information between filters is passed via request and session attributes.
Any object expecting to be such an attribute can implement a
RequestBindingListener or SessionBindingListener interface to be notified about
binding/unbinding events.

Any number of filters in the filter chain can implement the BranchingFilter
interface directing the request flow to one of alternate pipes. Typically, the last
filter in the pipe is a template filter selecting the correct template and invoking a
template builder building the final user interface page. The preceding filters refine
request data and load content into the context to be used by the template engine
during parsing of the template.

Note that the doFilter method of the HttpFilterChain object is called recursively,
although presented in the figure below as if there were two separate
HttpFilterChain instances. Also, there can be any number of filters in the filter
chain, but only one is presented in the figure.

Norther 2009 20 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

3.7 Component Lifecycle
To integrate independent components and dynamic configuration to a working
system, a framework must be provided around them. The framework is a set of
interfaces, helper classes, and services that support development of MBean based
components, and define guidelines on how to write code that plugs into the
framework.

The framework allows:

Norther 2009 21 (62)

Figure 3.5 The filter chain mechanism

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

 1 Partition of shared functionality into generic MBeans that are used through
their public interfaces and not through their actual implementations

 2 Reduced effort in MBean development since they become plug-ins for the
framework and share functionality provided by other MBeans

 3 Creation of a common server for all MBeans included in the framework

 4 Centralized configuration management

The control over components included in Tammi happens through the lifecycle
interfaces of their MBeans defining their common lifecycle.

3.7.1 Lifecycle Interfaces
The lifecycle interfaces define methods applied by the framework to control the
lifecycle of MBeans. These interfaces are not meant to be used alone as MBean
interfaces, but can be extended to be a part of one.

Manageable
Defines methods to be called when the implementing MBean is registered to and
unregistered from the MBean server.

ReferableMBean
Defines methods supporting a direct reference to the implementing MBean to
achieve competent performance.

AdaptableMBean
Defines methods for adapters being capable of managing objects that are not
originally implemented as MBeans.

Configurable
Defines methods supporting configuration through property files.

AccessController
Defines methods restricting access to the implementing MBean.

Startable
Defines start and stop methods controlling the state of the implementing MBean.

Executable
Defines methods allowing the implementing MBean to run in its own thread.

CacheClient
Defines methods to monitor and control the internal cache of the implementing
MBean.

Recyclable
Defines dispose and recycle methods to be called when the implementing object
is pooled and reused.

Norther 2009 22 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Poolable
Extends the Recyclable interface by allowing the implementing object to control
reuse by itself.

For example, an object implementing the Manageable, Startable and Executable
interfaces might have a lifecycle like the one presented below.

Note that the methods may be called several times during the lifecycle.

3.8 Persistence Layer
Tammi's persistence layer is based on an approach that maps objects to
persistence mechanisms in such a manner that simple changes to the relational
schema do not affect the object model. This approach makes objects independent
on the persistence layer allowing development of large-scale, mission critical
applications. The disadvantage is somewhat slower performance when compared
to more straightforward solutions.

Norther 2009 23 (62)

Figure 3.6 The lifecycle of a connector

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

3.8.1 Persistence Broker
The implementation of the persistence layer is derived from the persistence
broker API of the Object/Relational Bridge [OJB]. A persistence broker
implementing the Persister interface provides methods for retrieval, storage and
deletion of objects. A persistence framework specific implementation of the broker
can be retrieved from Factory. In addition to OJB, the persistence layer currently
supports Castor XML Binding Framework [Castor].

Norther 2009 24 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

3.8.2 Dynamic Mapping
Configuration of the mapping between the object model and the database schema
depends on the persistence framework to apply. OJB maintains a class descriptor
repository that can be configured either directly or via XML files. The configuration
may take place both at startup and during run-time. The mapping is defined
between named application classes and relational database tables.

In addition to a static mapping between the classes and tables, Tammi supports
Variables, which can dynamically adapt to hold any number of new attributes of
specified types. The classes corresponding to a particular set of attributes may
also be created and loaded during run-time. By applying run-time Variables
makes it possible to develop extremely dynamic persistence solutions.

The most dynamic persistence approach supported by Tammi is based on the
Common Warehouse Model defining a generic relational meta model of any SQL
based relational database schema.

By designing and implementing the data model of the application through the
relational meta model and Variables, the persistence of business objects can be
fully managed during run-time allowing dynamic changes to the model without
application rebuild, too.

Norther 2009 25 (62)

Figure 3.7 The PB API of OJB [OJB]

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

4 Available Packages
Tammi is divided into main packages deployed as separate plug-in applications:

• acorn contains miscellaneous classes not MBeans themselves but to be utilized
by any MBean included in Tammi

• core contains foundation MBeans providing base services and classes both for
Tammi itself and plug-in applications

• root contains MBeans implementing the persistence layer of Tammi

• leaf contains JFC MBeans supporting dynamic building of localized
graphical user interfaces for desktop applications

• spray contains MVC MBeans implementing the filter chain mechanism and
page-building model of Tammi

• sprig contains MBeans providing report and chart tools both for JFC and HTML
based user interfaces

• gate contains MBeans providing a meta-model of the other MBeans to
dynamically generate new persistent capable applications

• flex contains MBeans for building rich internet applications with Flex [Flex]

• kit contains a set of build tools

The main packages are divided into functional sub-packages as specified in the
Java Coding Standard for Tammi [Coding].

In addition, Tammi distribution may include the on-line manual as a separate
plug-in application.

4.1 Acorn Packages
Acorn packages include utilities, tools and helper classes shared by MBeans. The
HTTP package contains a static HTTP parser, the I/O package provides stream and
file classes for specific purposes, the MIME package provides support for content
types, the net package helps URL encoding and decoding, the security package
provides tools related to security and the util package contains implementations
of thread-safe collections.

The assembler package enables users to represent Java objects in byte code as
helper classes with which to analyze, create and manipulate binary classes.

4.2 Core Packages
Core packages contain MBeans implementing base services and classes grouped
according to functionality they provide. Typically, services support several
instances but one of them can be the default one. The default instance is usually
registered in the default JMX domain.

4.2.1 Base Package
The base package defines interfaces and implements classes to be applied to
MBeans implementing lifecycle interfaces. The ReferableMBean interface defines
methods with which to refer to its implementing MBeans directly to achieve
competent performance provided by direct references to objects while
maintaining the dynamic features of the distributed JMX architecture.

Norther 2009 26 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

The Referable class is the default implementation of ReferableMBean, which can
be applied as a helper class to extend when implementing application specific
MBeans. When adapters are preferred over extensions, the Adaptee class provides
base methods for accessing the framework services.

Startable maintains state, Registry and Container act as containers of other
MBeans. Domain maintains the default domain and Loader supports dynamic
class loading by applying the helper classes in the acorn.assembler package.

LogException can be thrown to create the corresponding error log entry
automatically. Logger defines logging functionality, and the static methods of its
abstract implementation provide basic tracing facilities.

The base package contains also Broker and its default implementation for
resolving registered MBeans.

4.2.2 Cache Package
The cache package contains MBeans providing caching capabilities for different
purposes.

Norther 2009 27 (62)

Figure 4.1 The base package

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Cache supports expiration of old entries in its enclosed java.util.Map
implementation. ResourceCache extends Cache by adding methods to cache
resources.

SharedCache defines an interface for a set of caches within different domains and
sharing the same expiration mechanism. Any client needing a cache can create a
new namespace by providing a unique domain parameter in access methods of
SharedCache. Objects without the domain parameter are cached in the default
domain. The clients of SharedCache are responsible for any naming conflicts.

CacheClient is an interface to be implemented by any MBean maintaining a cache
and allowing external control over it, e.g. by CacheMonitor.

4.2.3 Config Package
The config package provides configurable extensions to Factory, Converter or any
customized MBean. In addition, it contains different versions of Configurator for
external configuration of MBeans.

Norther 2009 28 (62)

Figure 4.2 The cache package

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

4.2.4 Converter Package
The converter package defines converters to perform translations from different
class types to others. Converters between java.lang.String and primitive types
and some common class types are included in the framework.

Implementations of ObjectConverter may provide additional converters.

Norther 2009 29 (62)

Figure 4.3 The config package

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

4.2.5 External Package
The external package contains Library providing a JNI mechanism to dynamically
access native libraries from within Tammi applications.

4.2.6 Factory Package
The factory package contains implementations of object factories and object
pools.

Factory instantiates objects from the given class name using either the given
class loader or an applicable one found from the class loader repository. The
default class loader will be used if neither one is specified.

Factory provides the following benefits compared to Class.forName():

• Support for parameters in constructors

• Internal class loader repository in the MBean server

• Optional class specific factories to be used for customized instantiation

• Integration with Pool supporting recycling of objects created by the factory

Class specific factories must implement ObjectFactory and register themselves to
Factory in order to replace the default factory when applicable; e.g. to instantiate
XML parsers, SSL sockets, etc, which require specific instantiation not supported
by the default factory.

Norther 2009 30 (62)

Figure 4.4 The converter package

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Pool extends Factory by adding support for pooling objects instantiated from the
given class name or java.lang.Class object reference. Pooling of objects stabilizes
memory consumption and reduces garbage collection making response times in
server applications more predictable.

When a new instance is requested from Pool, it first checks its pool if one is
available. If the pool is empty, a new object will be instantiated from the given
class. If the class is specified by its name, the request to create an instance will
be forwarded to Factory.

For pooled objects implementing the Recyclable interface, a recycle method will
be called when they are taken from the pool, and a dispose method will be called
when they are returned to the pool. Implementations of the methods should
initialize and release the pooled instances correspondingly. Objects that do not
implement the interface can also be pooled if they do not need to perform any
specific actions during pooling. The RecyclableSupport class can be extended to
get a minimal implementation of the Recyclable interface.

4.2.7 IO Package
The io package contains PathFinder and its default implementation for resolving
path names.

Norther 2009 31 (62)

Figure 4.5 The factory package

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

4.2.8 Locale Package
ContentTypeMap maintains mappings between MIME types and the corresponding
file name extensions, and between locales and the corresponding character
encodings. The mappings are typically defined in property files located in user's
home directory, in the Java home directory, or in the jar archive of the current
class.

The mappings between locales and the corresponding character encodings are
specified using the Java property file syntax, where the locale specification is the
key of the property and the charset is the value of the property. The locale
specification consists of three items:

 <lang>_<COUNTRY>_<VARIANT>
The variant can be whatever is appropriate for the application, like a markup
language specification, a browser specification, etc. However, it should not equal
any of the language and country specifications. ContentTypeMap looks for
charsets using the following search order:

<lang>_<COUNTRY>_<VARIANT>=<charset>
<COUNTRY>_<VARIANT>=<charset>
<lang>_<VARIANT>=<charset>
<VARIANT>=<charset>
<lang>_<COUNTRY>=<charset>
<COUNTRY>=<charset>
<lang>=<charset>

ContentTypeMap contains defaults for several language mappings and more
specific ones can be specified in an optional property file, e.g. wml=UTF-8. It
caches results of the search, which should guarantee sufficient performance.

The mappings between MIME types and the corresponding file name extensions
are specified using the same syntax as the mime.types file of the Apache Server,
i.e.:

 <mimetype> <ext1> <ext2>...
ContentTypeMap contains defaults for most common MIME types, like text/plain,
text/html, text/x-hdml, text/vnd.wap.wml, image/gif and image/jpeg. More
specific ones can be specified in an optional MIME types file.

ResourceFinder is a localized resource resolver. It searches for localized property
files from resource directories and the current class path by applying the same
search rules as ContentTypeMap. If no resources are found, it applies the search
mechanism of java.util.ResourceBundle.

4.2.9 Logger Package
The logger package contains concrete implementations of Logger based on
different logging libraries.

4.2.10 Mail Package
The mail package provides a simple e-mail service.

Norther 2009 32 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

4.2.11 Model package
The AdaptableMBean interface extends
javax.management.modelmbean.ModelMBean defining a generic adapter for any
Java class to be managed without implementing the corresponding MBean
interface. ReferableModelMBean provides a default implementation based on the
JavaBeans specification and using introspection to expose public attributes and
methods of the adapted class for management.

4.2.12 Monitor Package
The monitor package contains CacheMonitor monitoring caches maintained by
other MBeans and Finalizer maintaining a shared reference queue.

4.2.13 Naming Package
The naming package contains factories for directory contexts.

4.2.14 Net Package
The net package contains factories and extensions for basic sockets and other net
classes provided by the standard Java net package.

4.2.15 Realm Package
The realm package contains MBeans and helper classes for maintaining
authenticated principals.

4.2.16 Scripter Package
The scripter package contains Scripter for script managers, its BSF based default
implementation and scripting language engines. The scripts can be in files or
passed through an input stream to the script manager.

4.2.17 Security package
The security package contains MBeans and helper classes for access control,
secure communication and encryption.

AccessController can be implemented by MBeans controlling resources protected
by permissions allowing access for specific principles only. The controller supports
both allowed and denied permissions. The RegexPermission class extends
java.security.Permission by identifying proteced resources with regular
expressions instead of explicit names.

4.2.18 Startup Package
The startup package contains Startup responsible for starting up and shutting
down the Tammi system. The startup sequence is described in more detail in
Configuration Notes.

4.2.19 Thread Package
The thread package contains MBeans supporting execution of multi-threaded
tasks.

All clients running tasks in separate threads should apply Executor. By configuring
Executor instances for different purposes, the thread priorities can be managed
without interference between tasks.

Norther 2009 33 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Scheduler executes time-based tasks providing similar functionality as common
system-level utilities, such as at in Unix. Scheduler maintains a task queue that
may be used to execute java.lang.Runnable commands in any of three modes:

• Absolute (run at a given time)

• Relative (run after a given delay)

• Periodic (cyclically run with a given delay)

Timeout is a specific scheduler for executing timeout commands for I/O
operations and other tasks with limited time.

4.2.20 Util Package
The util package contains various utilities and helper classes for implementing
MBeans.

4.2.21 RT Package
The rt package contains extensions to javax.management.DynamicMBean, which
bring run-time dynamics to managed data structures.

Variable extends ReferableMBean with DynamicMBean methods. VariableX
provides a default implementation, which can maintain any number of dynamic
attributes defined during run-time.

VariableRegistry can be applied to register predefined attributes for constructing
new Variables during run-time.

4.2.22 XML Package
The XML package contains factories for XML parsers.

Norther 2009 34 (62)

Figure 4.6 The thread package

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

4.3 Root Packages
Root packages implement the persistence layer of Tammi. The current
implementation supports two persistence frameworks: the Object/Relational
Bridge [OJB] provides persistence for Java objects against relational databases,
while the Castor XML Framework [Castor] maps Java objects to XML documents.

4.3.1 DB Package
The db package contains the Persister interface through which to access an
implementation specific persistence framework. Factory may be applied to create
instances of the implementing class.

RepositoryClient, MultiRepositoryClient and their default implementations provide
common interfaces and support classes for MBeans to configure an appropriate
persistence layer for their internal requirements.

4.3.2 Locale Package
The locale package contains a persistent resource bundle implementation to
maintain localized resources in a database.

4.3.3 OJB Package
The ojb package contains the OJB [OJB] specific Persister implementation and the
corresponding factory.

4.3.4 Realm Package
RepositoryRealm in the realm package defines an interface to realms maintaining
user data in a repository. Its default implementation supports both id-based and
simple persistent users and roles.

4.4 Leaf Packages

4.4.1 JFC Package
The jfc package contains a JFC object factory and a few extended JFC classes.

4.5 Spray Packages
Tammi's filter chain mechanism is based on the Filter interface extending the
javax.servlet.Filter interface. The base filters implementing the interface are
located in the filter package. Other packages in spray contain mainly specific filter
implementations but also connectors for accessing the filters.

4.5.1 Authenticator Package
The authenticator package contains authenticator filters for different
authentication schemes specified by the HTTP protocol and other specifications.

Norther 2009 35 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

4.5.2 Connector Package
The connector package contains connectors and connections for communication
with client side applications.

Norther 2009 36 (62)

Figure 4.7 The authenticator package

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Connector is a generic interface for connectors. It is not Pipe or Filter itself but
one is typically attached to it. Connectors serve as entry points listening to input
from different sources and passing received requests to pipes. Connectors apply a
connection based request processing and load balancing mechanism. Further
processing of requests is delegated to filters in attached pipes.

4.5.3 Engine Package
The engine package contains MBeans for template processing.

TemplateEngine is a generic interface implemented by specific template engines.

ContextFilter creates a hierarchical context for tools accessible by subsequent
filters in the same pipe and especially by templates. Context tools can be any
Java objects, but those implementing the ContextListener interface will be notified
about binding/unbinding events and new requests.

4.5.4 Filter Package
The filter package contains MBeans and helper classes implementing the filter
chain mechanism.

Pipe defines an interface for pipes and Filter for filters. KeyFilter applies a filter
specific key to request parameters to filter requests. SecureFilter protects a filter
with an access controller.

TerminationFilter marks the end of the pipe. ClosingFilter closes the response
after the request has been processed by preceding filters. FilterException can be
thrown when filtering of the request fails.

BranchFilter is an interface to filters directing the request flow to one of several
alternative pipes and filters.

Norther 2009 37 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

4.5.5 Freemarker Package
The freemarker package contains an implementation of the FreeMarker template
engine [FM] and its helper classes.

4.5.6 Loader Package
The loader package contains the Task interface and its abstract implementation.

TaskLoader loads, caches and executes specific Task implementations, i.e.
TemplateActions and FlowStepActions, requested by clients.

4.5.7 Media Package
The media package contains MBeans for content management.

ContentFilter processes static files and CGIBinFilter executes CGI scripts.

ServiceFilter is a service-level branch filter choosing an appropriate service pipe
or filter for incoming requests based on mappings maintained by its configuration.

Norther 2009 38 (62)

Figure 4.8 The filter package

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

4.5.8 Protocol Package
The protocol package contains filters for parsing protocol specific requests.

HttpFilter parses HTTP requests, HttpRelayFilter relays requests to remote servers
or clusters, and IpMaskFilter allows or blocks requests from masked IP addresses.

4.5.9 Remote Package
The remote package contains RMI based implementation of Connector supporting
remote procedural access to Tammi applications.

4.5.10 DB Package
The db package provides RepositoryFilter and its default implementation to access
Tammi's persistence layer directly from templates. RespositoryTool must be
configured to ContextFilter to exploit the filter.

4.5.11 Servlet Package
The servlet package contains MBeans for running Tammi as a servlet under some
servlet container including an implementation of the JSP template.

4.5.12 Session Package
The session package provides support for session management. The state of a
request is mostly maintained by the request itself, but sessions can be used to
maintain state information for consecutive requests from the same user.

SessionManager produces and manages sessions according to the servlet
specification [Servlet]. It is not intended to be accessed directly but through the
request.

4.5.13 Template Package
The template package contains page-building MBeans.

PageFilter renders single page templates while LayoutFilter complies with the
page-building model of Turbine [Turbine]. Template engines to be used by the
filters are registered with template file name extensions determining the specific
engine to apply for rendering the corresponding templates.

FormFilter renders HTML forms with the aid of FormTool.

FlowFilter renders predefined page sequences with the aid of FlowTool.

TaskFilter invokes request specific tasks.

4.5.14 Terminal Package
The terminal package contains MBeans for user terminal, user agent and locale
specific request processing.

4.5.15 Velocity Package
The velocity package contains an implementation of the Velocity template engine
[Velocity] and its helper classes.

Norther 2009 39 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

4.6 Sprig Packages
Root packages implement reporting and charting tools. The current
implementation supports two reporting frameworks: JasperReports and
JFreeReport.

4.6.1 Report Package
The report package contains reporting tools.

ReportEngine and its abstract implementation provide the base for reporting.

4.6.2 Chart Package
The chart package contains charting tools.

ChartGenerator and its abstract implementation provide the base for charting.

4.6.3 JFree Package
The jfree package contains the JFree specific implementations of ReportEngine
and ChartGenerator.

4.6.4 Jasper Package
The jasper package contains the Jasper specific implementation of ReportEngine.

4.7 Third Party Libraries
Tammi utilizes a set of third party libraries including the following in alphabetical
order:

• Apache Ant Build Tool [Ant]

• Apache DB Object/Relational Bridge [OJB]

• Apache Jakarta Bean Scripting Framework [BSF]

• Apache Jakarta Commons [Coms]

• Apache Jakarta Log4J Logging Package [Log4J]

• Apache Jakarta Velocity Template Engine [Velocity]

• Concurrent Programming in Java [CPJ]

• DynamicJava Interpeter [DJava]

• <FreeMarker> [FM]

• HSQL Database Engine [HSQL]

• Jasper Reports Package [Jasper]

• Java™ 2 Platform, Standard Edition [Java]

• Java™ Servlet Technology [Servlet]

• JavaBeans™ Activation Framework [JAF]

• JavaMail™ API [JMail]

• JFree Charts Package [JFree]

• JFree Reports Package [JFree]

Norther 2009 40 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

5 Implementation Guidelines

5.1 Coding Standard
Tammi's source code conforms to the Java Coding Standard for Tammi [Coding].
The recommendation for plug-in applications is to apply the same standard.

5.2 Implementing MBeans
MBeans are base objects of Tammi application components. An object is a good
candidate to be implemented as an MBean when:

• An object exposes common functionality or data to be used by other objects not
in the same layer, package, or component as the object itself

• An object needs to expose its state to be monitored or administrated

• An object can be configured independently at startup or during run-time

5.2.1 Standard MBeans
In order to be manageable in an MBean server, a standard MBean explicitly
defines its management interface. The interface of an MBean defines methods it
makes available both for reading and writing its attributes and for other objects to
invoke.

Standard MBeans rely on a set of naming rules that should be observed when
defining the interface of their implementation. The management interface of a
standard MBean is composed of:

• The public constructors of the MBean

• The attributes of the MBean exposed through getter and setter methods

• Other methods of the MBean exposed for public use in the MBean interface

• The notification objects and types that the MBean may broadcast

The class of a standard MBean must implement an interface that is named after
the class followed by a suffix MBean. This interface defines the methods that are
exposed for public use. Methods of the MBean’s class, which are not listed in this
interface, are not accessible through the MBean server.

Attributes are always accessed via accessor methods. For readable attributes,
there is a getter method to read the attribute value. For writable attributes, there
is a setter method to allow the attribute value to be updated:

public AttributeType getAttributeName();
public void setAttributeName(AttributeType value);

For Boolean type attributes, it is recommended to define the following getter
method:

public boolean isAttributeName();
Standard MBeans implementing the javax.management. MBeanRegistration
interface will be informed about registrations to the MBean server through
callback methods.

Norther 2009 41 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Example
package org.norther.tammi.manual.sample;
/**
 * FibonacciCounter is an implementation of a simple Fibonacci counter.
 * Note that this code is only instructional.
 */
public class FibonacciCounter
{
 /**
 * The counter.
 */
 private int fibonacciCounter;

 /**
 * Default constructor.
 */
 public FibonacciCounter()
 {
 }

 /**
 * Gets the value of the counter.
 *
 * @return the counter.
 */
 public int getCounter()
 {
 return fibonacciCounter;
 }

 /**
 * Sets the value of the counter.
 *
 * @param counter the counter.
 */
 public void setCounter(int counter)
 {
 fibonacciCounter = counter;
 }

Norther 2009 42 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

 /**
 * Counts the Fibonacci number specified by the preset counter.
 *
 * @return a Fibonacci number.
 */
 public int count()
 {
 int fibonacci;
 int counter = getCounter();
 if (counter > 0)
 {
 fibonacci = 1;
 if (counter > 2)
 {
 int temporary;
 int previous = fibonacci;
 for (int i = 3; i <= getCounter(); i++)
 {
 temporary = previous;
 previous = fibonacci;
 fibonacci += temporary;
 }
 }
 }
 else
 {
 fibonacci = 0;
 }
 return fibonacci;
 }
}

package org.norther.tammi.manual.sample;
/**
 * CounterMBean is an MBean interface to a simple Fibonacci counter.
 * Note that this code is only instructional.
 */
public interface CounterMBean
{
 /**
 * Gets the value of the counter.
 *
 * @return the counter.
 */
 public int getCounter();

 /**
 * Sets the value of the counter.
 *
 * @param counter the counter.
 */
 public void setCounter(int counter);

 /**
 * Counts the Fibonacci number specified by the counter.
 *
 * @return a Fibonacci number.
 */
 public int count();
}

Norther 2009 43 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

package org.norther.tammi.manual.sample;
/**
 * Counter is an MBean implementation of the simple Fibonacci counter.
 * Note that this code is only instructional.
 */
public class Counter extends FibonacciCounter implements CounterMBean
{
 /**
 * Default constructor.
 */
 public Counter()
 {
 super();
 }
}

5.2.2 Referable MBeans
Referable MBeans implement ReferableMBean in the core.base package, or one of
its extensions. The interface defines a getMBean method returning a direct
reference to the corresponding MBean. The reference can be obtained from the
MBean server and is applied to achieve better performance when there is a need
to call the methods of the referenced MBean frequently. The reference must not
be kept for a long period of time, as it becomes invalid when the MBean is
unregistered from the MBean server. Instances of the MBeanHandle class can be
applied to keep direct references to MBeans up-to-date automatically, as they
listen to registration events of their referents and update the references
correspondingly. Therefore, referable MBeans must also implement the
javax.management.NotificationBroadcaster interface to enable MBeanHandle
support.

ReferableMBean can be implemented by extending the Referable class or by
applying an implementation of AdaptableMBean. The latter approach allows any
Java class to be ReferableMBean with minimum effort.

Configurable and its implementation in the core.config package provide support
for property files. Registry, Container and their implementations in the core.base
package act as containers of other MBeans. Startable in the core.base package
defines start and stop methods for MBeans maintaining an internal state.

New MBeans meant to be referable must extend ReferableMBean, or one of its
extensions. It is not enough to implement the ReferableMBean interface together
with another MBean interface, as methods of only one MBean interface can be
exposed for public use. Thus all public methods of an MBean implementation
must be collected to one MBean interface.

The above notice doesn't apply to AdaptableMBean implementations as they
expose both ReferableMBean methods and adapted methods dynamically.

Norther 2009 44 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Example
package org.norther.tammi.manual.sample;
import org.norther.tammi.core.base.ReferableMBean;
/**
 * ReferableCounterMBean extends CounterMBean to be referable.
 * Note that this code is only instructional.
 */
public interface ReferableCounterMBean extends ReferableMBean, CounterMBean
{
}

package org.norther.tammi.manual.sample;
import javax.management.*;
import org.norther.tammi.core.base.Referable;
import org.norther.tammi.core.base.ReferableMBean;
/**
 * ReferableCounter extends Counter to be referable.
 * Note that this code is only instructional.
 */
public class ReferableCounter extends Counter
 implements ReferableCounterMBean, MBeanRegistration,
 NotificationBroadcaster
{
 /**
 * The referable adapter.
 */
 private Referable referable = new Referable(this);

 /**
 * Default constructor.
 */
 public ReferableCounter()
 {
 super();
 }

 public ObjectName preRegister(MBeanServer server, ObjectName name)
 throws Exception
 {
 return referable.preRegister(server, name);
 }

 public void postRegister(Boolean done)
 {
 referable.postRegister(done);
 }

 public void preDeregister() throws Exception
 {
 referable.preDeregister();
 }

Norther 2009 45 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

 public void postDeregister()
 {
 referable.postDeregister();
 }

 public ReferableMBean getMBean()
 {
 return referable.getMBean();
 }

 public ObjectName getObjectName()
 {
 return referable.getObjectName();
 }

 public boolean isRegistered()
 {
 return referable.isRegistered();
 }

 public MBeanServer getMBeanServer()
 {
 return referable.getMBeanServer();
 }

 public void addNotificationListener(NotificationListener listener,
 NotificationFilter filter, Object handback)
 {
 referable.addNotificationListener(listener, filter, handback);
 }

 public void removeNotificationListener(NotificationListener listener)
 throws ListenerNotFoundException
 {
 referable.removeNotificationListener(listener);
 }

 public MBeanNotificationInfo[] getNotificationInfo()
 {
 return referable.getNotificationInfo();
 }
}

5.2.3 Adaptable MBeans
The model MBean specification of JXM defines the
javax.management.modelmbean.ModelMBean interface providing a management
template for managed resources not implemented as standard MBeans. The JMX
agent must provide the corresponding implementation class named
javax.management.modelmbean.RequiredModelMBean. This model MBean
implementation is intended to provide ease of use and extensive default
management behavior for the instrumentation.

The AdaptableMBean interface and its default implementation in the core.model
package extend model MBeans by implementing the ReferableMBean interface
and providing automatic introspection of managed resources based on the
JavaBeans specification.

Norther 2009 46 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Example
MBeanServer server = getMBeanServer();
ObjectInstance instance = server.createMBean(
 "org.norther.tammi.core.model.AdapterX",
 (ObjectName) null,
 new Object[]{ new FibonacciCounter() },
 new String[]{ "java.lang.Object" });
ObjectName name = instance.getObjectName();
server.set(name, "Counter", new Integer(5));
Integer fibonacci = (Integer) server.invoke(name, "count");

5.2.4 Executable MBeans
A set of Executors, a thread factory MBean, Executable and its implementation in
the core.thread package provide a model for implementing multi-threaded
MBeans. MBeans implementing Executable and the run method defined by it can
be executed under a specific Executor.

• A direct executor is provided for consistency and it executes Executables in the
caller's thread

• A threaded executor executes Executables in new threads created for each
executable

• A pooled executor executes Executables in threads obtained from a thread pool
and is capable of queuing executables when no threads are available

5.2.5 Dynamic MBeans
Standard MBeans are suitable for straightforward structures, where the exposed
functionality and data is well defined in advance and unlikely to change often.
When the data structures are likely to evolve often over time, the implementation
must provide more flexibility, such as being determined dynamically during run-
time. Dynamic MBeans bring this adaptability and provide an alternative MBean
implementation with more elaborate capabilities.

Dynamic MBeans implement the predefined javax.management.DynamicMBean
interface, which exposes the attributes and operations at run-time. Instead of
exposing them directly through method names, dynamic MBeans implement a
method, which returns all attributes and method signatures.

Dynamic MBeans offer the same capabilities that are available through standard
MBeans when accessed through the MBean server. However, their attributes and
methods cannot be accessed directly like methods of ReferableMBeans.

Note that the Variable interface, its default implementation and the
VariableMBeanAttributeInfo class in the core.rt package provide a prepared model
to apply dynamic MBeans. The dynamic information of them can be defined neatly
in the scripts.

Norther 2009 47 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Example
package org.norther.tammi.manual.sample;
import javax.management.*;
/**
 * DynamicCounter implements Counter dynamically.
 * Note that this code is only instructional.
 *
 * @author Ilkka Priha
 */
public class DynamicCounter
 extends Counter
 implements DynamicMBean
{
 /**
 * The MBeanInfo.
 */
 private MBeanInfo mBeanInfo;

Norther 2009 48 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

 /**
 * Default constructor.
 */
 public DynamicCounter()
 {
 super();
 // Create the bean info (this should be generated
 // based on some dynamic information instead of
 // hardcoded one to exploit its potential).
 try
 {
 mBeanInfo = new MBeanInfo(
 DynamicCounter.class.getName(),
 "A dynamic Fibonacci counter.",
 new MBeanAttributeInfo[]
 {
 new MBeanAttributeInfo(
 "Counter","int",
 "The counter for a Fibonacci number.",
 true, true, false)
 },
 new MBeanConstructorInfo[]
 {
 new MBeanConstructorInfo(
 "Default constructor.",
 DynamicCounter.class.
 GetConstructors()[0])
 },
 new MBeanOperationInfo[]
 {
 new MBeanOperationInfo(
 "Counts a Fibonacci number.",
 DynamicCounter.class.
 getMethod("count", new Class[0]))
 },
 new MBeanNotificationInfo[0]);
 }
 catch (Exception x)
 {
 }
 }

 public MBeanInfo getMBeanInfo()
 {
 return mBeanInfo;
 }

 public Object getAttribute(String name)
 throws AttributeNotFoundException,
 ReflectionException,
 MBeanException
 {
 if (name.equals("Counter"))
 {
 return new Integer(getCounter());
 }
 throw new AttributeNotFoundException(name);
 }

Norther 2009 49 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

 public void setAttribute(Attribute attr)
 throws AttributeNotFoundException,
 InvalidAttributeValueException,
 ReflectionException,
 MBeanException
 {
 String name = attr.getName();
 Object value = attr.getValue();
 if (name.equals("Counter"))
 {
 try
 {
 setCounter(((Integer) value).intValue());
 }
 catch (Exception x)
 {
 throw new ReflectionException(x);
 }
 return;
 }
 throw new AttributeNotFoundException(name);
 }

 public AttributeList getAttributes(String[] names)
 {
 AttributeList list = new AttributeList(names.length);
 for (int i = 0; i < names.length; i++)
 {
 try
 {
 list.add(
 new Attribute(names[i],
 getAttribute(names[i])));
 }
 catch (Exception x)
 {
 }
 }
 return list;
 }

 public AttributeList setAttributes(AttributeList attrs)
 {
 Attribute attr;
 AttributeList list = new AttributeList(attrs.size());
 for (int i = 0; i < attrs.size(); i++)
 {
 try
 {
 attr = (Attribute) attrs.get(i);
 setAttribute(attr);
 list.add(
 new Attribute(attr.getName(),
 getAttribute(attr.getName())));
 }
 catch (Exception x)
 {
 }
 }
 return list;
 }

Norther 2009 50 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

 public Object invoke(String method,
 Object[] params,
 String[] signature)
 throws ReflectionException
 MBeanException
 {
 if (method.equals("count"))
 {
 return new Integer(count());
 }
 throw new ReflectionException(
 new NoSuchMethodException(method));
 }
}

5.3 Identifying MBeans
An object name uniquely identifies an MBean within an MBean server. Clients use
this object name to identify the MBean on which to perform operations. The class
javax.management.ObjectName represents an object name, which consists of two
parts:

• A domain name

• An unordered set of one or more key properties

5.3.1 Domain Name
The domain name is a case-sensitive string. It provides a structure for the naming
space within a JMX agent or within a global management solution. The domain
name part may be omitted in an object name, as the MBean server is able to
provide a default domain. When an exact match is required, omitting the domain
name will have the same result as using the default domain defined by the MBean
server.

How the domain name is structured is application-dependent. The domain name
string may contain any characters except those which are object name separators
or wild-cards, namely the colon, comma, equals sign, asterisk or question mark
(:,=*?). JMX always handles the domain name as a whole; therefore any
semantic sub-definitions within the string are opaque to a JMX implementation.

Domain names used by Tammi are prefixed with “tammi” by default. The default
domain is used for shared services. A few other domain names reserved by
Tammi have been selected by functional criteria. Plug-in applications should use
at least one application specific domain for their internal MBeans.

Domain names shouldn't be referenced directly from source code as both the
applied naming scheme and individual domain names can vary depending on the
configuration. Configuration scripts should create an applicable naming scheme
and pass domain names to MBeans as attributes or in parameters of methods.

5.3.2 Key Property List
The key property list enables you to assign unique names to the MBeans of a
given domain. A key property is a property-value pair, where the property does
not need to correspond to an actual attribute of an MBean.

The key property list must contain at least one key property. It may contain any
number of key properties, whose order is not significant.

Norther 2009 51 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

Tammi uses a naming scheme where a key property named “type” is assigned to
all MBeans. Its value is the name of the MBean's interface without the package
name. This key helps to identify MBeans.

By default, Tammi registers MBeans to the default domain. The Referable class
creates a unique object name for any MBean extending it that is registered
without a predefined object name.

Direct references to key names from source code should be avoided. Keys can be
used for classifying MBeans by different criteria, but the names of keys to use for
classification should always be passed to MBeans as attributes or in parameters of
methods.

If the key value presents an attribute of the MBean, the attribute should be read-
only during the registration time of the MBean.

5.3.3 Pattern Matching
The object name can be either a qualified name or a query. The latter one
contains wild-cards applied in pattern matching. The result of pattern matching
can be a set of matching MBeans or the first one found.

The matching syntax for domain names is:

• * matches any character sequence, including an empty one

• ? matches any one single character

There is no wild-card matching performed neither on key property names nor on
key property values. Only complete property-value pairs are used in pattern
matching. While key properties are atomic, the list of key properties may be
incomplete and used as a pattern:

• * matches any property-value pair, including an empty one

5.4 Accessing MBeans
MBeans can be accessed through the MBean server by identifying them by their
object name. Within Tammi, the Broker class implements a large set of both
static and non-static methods for resolving MBean references. The MBeanBroker
class provides access to these methods from scripts and templates.

5.4.1 From Objects
Broker defines methods with which to resolve references to MBeans, and the
Broker class provides static methods to get the default instance implementing
the interface. The methods take a key as a parameter and try to resolve the key
to a direct reference to the corresponding ReferableMBean, to a qualified object
name of the MBean, or to a set of qualified object names, depending on the
method. The key can be an MBean interface, an object name query with wild-
cards, or an application specific alias. Object names should not be referenced
directly from source code, but they should be hidden behind an alias or passed to
MBeans as attributes or in parameters of methods.

For MBean interfaces, Broker tries to find the first MBean in the default domain
implementing the specified interface. This method should be used when the client
needs to access the default implementation of a service MBean. The configuration
should maintain only one instance of each service MBean in the default domain.

For object name queries, Broker tries to find the first MBean matching the
specified query, or alternatively all matching MBeans.

Norther 2009 52 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

For aliases, Broker tries to resolve the MBean behind the alias. Application specific
aliases can be configured in Broker at startup. Aliases are arbitrary strings
mapped to qualified object names or queries.

5.4.2 From Scripts and Templates
The MBeanBroker class is a helper class providing access to Broker from scripts
and templates. MBeanBroker supports basic data types and performs type
castings automatically making it easier to use it from scripting environments. An
instance of MBeanBroker is automatically added to all scripting and template
contexts within Tammi. The reference to it is mapped to a broker key by default.

Scripts and templates have full access to all registered MBeans through the
broker.

5.5 Handling URLs
A URL represents a Uniform Resource Locator, a pointer to a “resource” on the
HTTP and other Internet protocols. A resource can be something as simple as a
file or a directory, or it can be a reference to a more complicated object. Each
request has a URL specifying its target resource.

A URI represents a Uniform Resource Identifier, which is a superset of a URL not
limited to locations but rather identifying resources with a name or a set of
attributes. The difference between the two is not remarkable.

Example
http://server:8080/app/tammi/template/Index;jsessionid=A1SDZ2?id=foo

In general, a URL can be broken into several parts. The “http” scheme above
specifies the protocol for locating the resource, the “server:8080” part specifies
the host name and port of the resource, and the rest of the components specify
the URL path. With the HTTP protocol, the URL path can contain specific
components that are not actually part of the path locating the resource, but
additional instructions related to request processing.

A semicolon (“;”) separates URL object parameters from the actual URL path and
the components after a question mark (“?”) specify a query string.

Also the components of the actual URL path have different meanings. The division
is based on the servlet specification [Servlet]. The URL path can be divided into
two parts:

• Context path specifies the external context of servlet applications

• Path info contains application specific information for pipes and filters

5.5.1 Relative vs. Absolute URLs
A relative URL needs not to specify all parts of a URL. If the protocol, host name,
or port number is missing, the value is inherited from the fully specified URL of
some previous request. The path part must always be specified.

Relative URLs are preferred to absolute ones as their protocol and host parts are
resolved automatically. However, redirections and specific configurations require
absolute URLs specifying all parts of the URL. The getLinkedURL and
getRedirectedURL methods of the ProtocolExtension interface can be used for
building URLs. They return absolute or relative URLs depending on the situation
and configuration. The behavior of these methods can be configured in HttpFilter.

Norther 2009 53 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

5.5.2 Context Path
If some external server, like a servlet container, relay or cluster, controls one or
more Tammi instances, the context path contains context information for that
external server.

The context path is returned by the getContextPath method of the
javax.servlet.http.HttpServletRequest interface. It must be included in
redirections and links.

5.5.3 Path Info
The path info contains any application specific information associated with the
URL the client sent when it made a request. The path info follows the context
path but precedes the object parameters and query string. HttpFilter can be
configured to parse the path info as a set of key-value pairs to be added to
request parameters.

The getPathInfo method of the javax.servlet.http.HttpServletRequest interface
returns an unparsed path info. A set of parameter methods can be applied to
access the parsed parameters.

5.5.4 Object Parameters
Object parameters are used internally by the HTTP services of Tammi. E.g. the
session id for clients not supporting cookies is encoded in object parameters.

Object parameters are not visible to applications. However, they must be included
in links depending on sessions by calling the encodeURL or encodeRedirectURL
methods of the javax.servlet.http.HttpServletResponse interface before adding
the links to the response.

5.5.5 Query String
A query string is optionally contained in the request after the path info and object
parameters. It contains a set of key-value pairs that are parsed and added to
request parameters.

The getQueryString method of the javax.servlet.http.HttpServletRequest interface
returns an unparsed query string. A set of parameter methods can be applied to
access the parsed parameters.

The addQueryString method of the ProtocolExtension interface adds parameters
to links to be included in the response. The parameters are automatically added
to locations returned by the encodeURL and encodeRedirectedURL methods of the
javax.servlet.http.HttpServletResponse interface.

5.5.6 Redirection
Redirection of a request must include an absolute URL. The sendRedirect method
of the javax.servlet.http.HttpServletResponse interface converts a location into an
absolute URL and makes a redirection response. Note that if the redirected
request depends on sessions, object parameters must be included in the location
beforehand by calling the encodeRedirectURL method of the interface.
RedirectionException in the content package can be thrown from a filter to
perform redirection automatically.

The getRequestURL method of the javax.servlet.http.HttpServletRequest interface
returns the current request URL, which can be given as a parameter to the
encodeRedirectURL and sendRedirect methods.

Norther 2009 54 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

5.5.7 Links
In some configurations controlled by an external server, links must be absolute.
The context path must always be present in links. Links depending on sessions
must also be checked to include the session id in their object parameters, if the
client does not support cookies. The getLinkedURL and getRedirectedURL methods
of the ProtocolExtension interface and the encodeURL and encodeRedirectURL
methods of the javax.servlet.http.HttpServlet.Response interface can be used for
building links. In addition, several aspects related to character encoding of URL
paths and query strings must be taken into account. These are discussed in the
following section.

LinkTool available in the template context contains several methods helping
applications in building links within templates.

5.6 Character Encoding
Character encoding is a method (algorithm) for presenting characters in digital
form by mapping sequences of code numbers of characters into sequences of
octets. In the simplest case, each character is mapped to an integer in the range
0 - 255 according to a character code and these are used as such as octets.
Naturally, this only works for character repertoires with at most 256 characters.
For larger sets, more complicated encodings are needed. Encodings, which are
also called charsets, have registered names, for example ISO -8859-! formerly
known as Latin 1.

Processing requests based on various Internet protocols require mappings from
computer specific bytes to characters of human languages in several places. In
some cases, these mappings are well specified by the protocol while in others
applying the correct one requires a predefined agreement between the client and
the server. Such an agreement must be configured to the server.

5.6.1 URL Encoding
The RFC2396 defines a general syntax for URIs. It limits the allowed characters to
“a”-“z”, “A”-“Z” and “0”-“9”. In addition, the following punctuation marks and
symbols are not reserved for any specific purpose “-”, “_”, “.”, “!”, “~”, “*”, “'”,
“(” and “)”. All other characters must be encoded as escaped octets consisting of
the percent character “%” followed by the two hexadecimal digits representing
the octet code. For example, “%20” is the escaped encoding for the US-ASCII
space character. Encoding of parameters of a query string has an exception,
which encodes spaces as plus signs “+”.

Incoming URLs are by default decoded based on this specification and outgoing
links should follow the same specification. The static URLDecoder and URLEncoder
classes contain a set of methods for decoding and encoding URL components.

If the decoded URL represents a string in some language not using the US-ASCII
character set, the URL must be decoded once again to map the 8 bit octets of the
above specification to language specific Unicode characters. The default encoding
is the same as the request encoding. If the request doesn't specify an encoding,
Tammi applies the encoding configured in HttpFilter. If none is specified, Tammi
applies either UTF-8 or ISO-8859-1 depending on which one is accepted by the
client.

The newer RFC2718 defines guidelines for URL schemes. It specifies that the
default encoding from 8 bit octets to language specific characters should be UTF-
8, which is reasonable as this encoding is capable of performing mappings to any
language.

Norther 2009 55 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

The implementations of the javax.servlet.http.HttpServletRequest interface
perform URL decoding automatically based on the current configuration.
Correspondingly, LinkTool performs URL encoding of links automatically.

5.6.2 Request Encoding
The RFC2068 defines the HTTP protocol version 1.1. A start-line, headers and
body form a HTTP request. The start-line and headers contain typically characters
only from the US-ASCII character set. The Content-Type header specifies the
encoding of the body of the request. If the encoding is not specified, Tammi
applies the encoding configured in HttpFilter. If none is specified, Tammi uses
ISO-8859-1 by default.

The getCharacterEncoding method of the javax.servlet.ServletRequest interface
returns the current request encoding.

Tammi provides support for parsing HTML Form based request bodies only; more
complicated request bodies must be parsed by applications.

5.6.3 Response Encoding
The encoding of the response is decided by applications. Tammi provides
ContentTypeMap for mapping language and country specific locales to character
encodings. The locale for a specific pipe can be configured in LocaleFilter.

An explicit response encoding can be set with the setContentType method of the
javax.servlet.ServletResponse interface.

The getCharacterEncoding method of the javax.servlet.ServletResponse interface
returns the current response encoding.

5.6.4 Template Encoding
Templates are usually written using an encoding corresponding to the language of
the contents of the template. Sometimes the editors used for writing templates do
not support language specific encodings but some generic one, like UTF-8, must
be applied. The default template encoding can be configured in TemplateEngine.
Pipe specific encodings can be configured in PageFilter and LayoutFilter.

5.6.5 Resource Encoding
Property files can also contain localized resources. The same encoding rules apply
to resources as to templates. The default resource encoding can be configured in
ResourceFinder.

Norther 2009 56 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

6 Configuration Notes
Configuration files of Tammi include property files, BSF scripts [BSF] and markup
templates. They can be located in jar archives, local directories, or remote URLs.
Configuration directories can be configured in PathFinder.

6.1 Property Files
The Configurable class implements methods to manage internal properties of an
MBean. If the MBean wants to expose these methods to public use, its MBean
interface can extend Configurable.

The properties of an MBean are maintained in a Configuration object.
Configuration is an extended version of the java.util.Properties class supporting
any character encoding in the property file, include statements to other property
files within the property file, multi-value properties as java.util.Vectors, and
several type conversion methods for accessing property values.

Configurable defines methods to specify a property file, property URL or individual
properties. It resolves relative pathnames of property files by calling PathFinder.
PathFinder maintains a list of directories containing property files mapped to its
config key.

Configurator is capable of configuring other MBeans through their public
attributes exposed for management.

6.2 BSF Scripts
BSF scripts can be executed through Scripter. During startup, scripts located in
application jars and startup directories are executed automatically.

Startup looks for application jars from directories configured in PathFinder.
PathFinder maintains a list of directories containing application jars mapped to its
lib key.

In addition, Startup looks for scripts from startup directories specified in
command line options and configured in PathFinder. PathFinder maintains a list of
directories containing startup scripts mapped to its start key.

It is recommend that applications package their base scripts into jar archives and
leave frequently changing scripts into startup directories. Script names should be
prefixed with a three-digit number explicitly specifying the execution order.

6.3 Templates
The mechanism for finding templates depends on the specific template engine
implementation. VelocityEngine and FreemarkerEngine use resource loaders for
loading templates. The current implementation supports class path resource
loaders, file resource loaders, jar resource loaders and property resource loaders.
The resource loaders to apply in a specific configuration can be configured
separately to each template engine instance.

Resource loaders resolve relative pathnames to template directories by calling
PathFinder. PathFinder maintains a list of directories containing templates
mapped to its template and protected keys. The latter one contains templates
with restricted access. The list of directories containing jar archives is mapped to
its lib key.

Norther 2009 57 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

6.4 Startup Sample
Startup is responsible for starting up Tammi, initializing MBeans providing base
services required by the framework, configuring the run-time environment and
loading plug-in applications. The Startup class implements Startup and serves as
the default startup object. It can be activated either by invoking its static main
method when starting the JVM, or by simply instantiating it e.g. from a servlet,
like StartupServlet does.

Startup creates an MBean server, creates and registers base MBeans and
executes startup scripts located in application jars and startup directories. It
supports the following command line options controlling the configuration:

• -r(oot) <path> specifies the root directory of relative file paths

• -b(in) <path> specifies the binary directory containing native libraries; more
than one option or a comma separated list can be given to specify multiple
directories

• -d(ata) <path> specifies the directory containing persistent data

• -t(emp) <path> specifies the directory containing temporary data

• -c(config) <path> specifies the configuration directory containing property
files; more than one option or a comma separated list can be given to specify
multiple directories

• -s(tart) <path> specifies the startup directory containing startup scripts;
more than one option or a comma separated list can be given to specify
multiple directories

• -domain <domain> specifies the default domain for MBeans

• -wait forces the main thread to wait until a shutdown method is called

During the first round, Startup collects all startup scripts from application jars into
a sorted set. Then it collects scripts from startup directories and adds them to the
same set. Scripts from the most recent sources override duplicates. After
collection, the scripts in the set are executed in ascending order.

During the following rounds, Startup checks if any new startup directories have
been added to PathFinder. Any new scripts found from the new directories will be
executed and the check repeated until no new directories are found.

A typical startup creates, registers and starts an applicable set of services, creates
factories for base objects and loads plug-in applications by executing application
specific startup scripts.

Depending on the configuration, startup can activate a set of connectors listening
to client requests from different input sources. An active connector passes
received requests to a pipe attached to it. The connector pipe can contain filters
directing the request flow to application specific pipes based on mappings
between request parameters and pipe names. Depending on the application, the
pipes can contain filters executing CGI scripts, returning static files, or rendering
dynamic pages.

In the presented sample configuration, filters call recursively the doFilter method
of the filter chain until one of them returns a response, or an exception is thrown.
The doFilter method is represented as an unnamed call in the diagram. Branch
filters direct requests to a set of branching pipes and filters. Branches are
alternate routes; only one is selected for any single request. Filters can interact
freely with other services.

Norther 2009 58 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

6.4.1 HttpFilter

Norther 2009 59 (62)

Figure 6.1 A sample configuration

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

DefaultHttpFilter is the default implementation of HttpFilter in the spray.protocol
package. It parses requests based on the HTTP protocol. It can be configured to
provide additional services, like parsing of session cookies.

6.4.2 TerminalFilter
DefaultTerminalFilter is the default implementation of TerminalFilter in the
spray.terminal package. It defines the user terminal type based on user agent
information of requests and selects an appropriate MIME type for the
corresponding responses. Its default key for explicit terminal selection is 'x'.

6.4.3 ContextToolFilter
DefaultContextToolFilter is the default implementation of ContextToolFilter in the
spray.engine package maintaining a hierarchical context of context tools. Context
tools to be loaded automatically into the context by the filter are specified in its
configuration. The standard context hierarchy consists of a request context,
session context and global context. Additional contexts can be inserted into the
hierarchy by other filters.

6.4.4 HostFilter
DefaultHostFilter is the default implementation of the HostFilter in the
spray.protocol package. It selects the host pipe to apply based on the HTTP host
request header. Its default key for explicit host selection is 'host'.

6.4.5 LocaleFilter
DefaultLocaleFilter is the default implementation of LocaleFilter in the
spray.terminal package providing locale support for responses. Its default key for
explicit locale selection is 'lang'.

6.4.6 ExceptionFilter
DefaultExceptionFilter is the default implementation of ExceptionFilter in the
spray.filter package and it returns an evaluated error message as a response if
the corresponding request was not accepted by any of the preceding filters.

6.4.7 ServiceFilter
DefaultServiceFilter is the default implementation of ServiceFilter in the
spray.media package and it acts as the service-level branch filter. The service
filter has a specific role to select the service specific pipe to which to direct
requests. Its default key for explicit service selection is 'at'.

As plug-in applications may generate dynamically links to each other, they must
have access to the mappings maintained by the service filter. The mappings are
exposed to clients through methods defined by ServiceFilter.

6.4.8 MediaContentFilter
DefaultMediaContentFilter is the default implementation of MediaContentFilter in
the spray.media package providing cached support to access both binary and
markup files requested by users.

6.4.9 CGIBinFilter
DefaultCGIBinFilter is the default implementation of CGIBinFilter in the
spray.media package executing CGI scripts.

Norther 2009 60 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

6.4.10 HttpFormAuthFilter
DefaultHttpFormAuthFilter implements AuthenticatorFilter in the
spray.authenticator package and it authenticates user principals by applying an
HTTP login form.

6.4.11 MediaContentKeyFilter
DefaultMediaContentKeyFilter is an extension of DefaultContentFilter. It can be
configured to search for content files from application specific directories. Its
default key for explicit media file selection is 'src'.

6.4.12 TaskFilter
DefaultTaskFilter is the default implementation of TaskFilter in the spray.template
package, and it invokes actions specified in request data. Actions are
implementations of the Task interface and must implement an execute method.
Actions can also be BSF scripts. TaskLoader loads specified actions and caches
them for forthcoming invokes. Packages to search for actions can be configured
in TaskLoader. Its default key for explicit task selection is 'task'.

6.4.13 SkinFilter
DefaultSkinFilter is the default implementation of SkinFilter in the spray.template
package. It selects the skin to apply when rendering web content. Its default key
for explicit skin selection is 'skin'.

6.4.14 FormFilter
DefaultFormFilter is the default implementation of FormFilter in the
spray.template package and it provides support to render and validate HTML
forms. It maintains mappings between class types and control templates to
enable composition of complicated form templates from type specific input field
templates. Its default key for explicit form theme selection is 'form'.

6.4.15 FlowFilter
DefaultFlowFilter is the default implementation of FlowFilter in the spray.template
package. It executes flow specific step templates, variables and actions. Its
default key for explicit flow selection is 'flow'.

6.4.16 LayoutFilter
LayoutFilter is the more complicated one of the two template rendering filters
while PageFilter is the simpler one. DefaultPageFilter implements PageFilter in the
spray.template package and evaluates a template specified in request data by
passing its name to TemplateEngine. Their default key for explicit page selection
is 'page'.

Templates can render sub-templates by calling a page tool if the tool is loaded
into the context. Sub-templates may define common parts of user interface pages
while the actual target template produces the request specific content.

DefaultLayoutFilter implements LayoutFilter in the template package and supports
the page layout model. It does not return the target template directly, but
evaluates a layout template enclosing the target template in the desired location
through the page tool. LayoutFilter complies with the page-building model of
Turbine [Turbine].

Norther 2009 61 (62)

Tammi Application Framework Version 6.1.1
Technical Specification 03.12.2009

6.4.17 ClosingFilter
DefaultClosingFilter is the default implementation of ClosingFilter in the
spray.filter package terminating the filter chain and closing the response if no
other filter has done it.

Norther 2009 62 (62)

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Definitions, Acronyms and Abbreviations
	1.4 References
	1.5 Overview

	2 Installation Instructions
	2.1 Framework
	2.1.1 Installation Files
	2.1.2 Directory Structure

	2.2 Applications
	2.2.1 Installation Files
	2.2.2 Directory Structure

	3 Design Patterns
	3.1 Component Model
	3.2 JMX™ Architecture
	3.2.1 Instrumentation Level
	3.2.2 Agent Level
	3.2.3 Manager Level
	3.2.4 Future Concepts

	3.3 Deployment
	3.4 Dynamic Configuration
	3.4.1 Property Files
	3.4.2 Bean Scripting Framework
	3.4.3 DynamicJava
	3.4.4 Management Interface

	3.5 User Interface
	3.6 Filter Chain
	3.7 Component Lifecycle
	3.7.1 Lifecycle Interfaces

	3.8 Persistence Layer
	3.8.1 Persistence Broker
	3.8.2 Dynamic Mapping

	4 Available Packages
	4.1 Acorn Packages
	4.2 Core Packages
	4.2.1 Base Package
	4.2.2 Cache Package
	4.2.3 Config Package
	4.2.4 Converter Package
	4.2.5 External Package
	4.2.6 Factory Package
	4.2.7 IO Package
	4.2.8 Locale Package
	4.2.9 Logger Package
	4.2.10 Mail Package
	4.2.11 Model package
	4.2.12 Monitor Package
	4.2.13 Naming Package
	4.2.14 Net Package
	4.2.15 Realm Package
	4.2.16 Scripter Package
	4.2.17 Security package
	4.2.18 Startup Package
	4.2.19 Thread Package
	4.2.20 Util Package
	4.2.21 RT Package
	4.2.22 XML Package

	4.3 Root Packages
	4.3.1 DB Package
	4.3.2 Locale Package
	4.3.3 OJB Package
	4.3.4 Realm Package

	4.4 Leaf Packages
	4.4.1 JFC Package

	4.5 Spray Packages
	4.5.1 Authenticator Package
	4.5.2 Connector Package
	4.5.3 Engine Package
	4.5.4 Filter Package
	4.5.5 Freemarker Package
	4.5.6 Loader Package
	4.5.7 Media Package
	4.5.8 Protocol Package
	4.5.9 Remote Package
	4.5.10 DB Package
	4.5.11 Servlet Package
	4.5.12 Session Package
	4.5.13 Template Package
	4.5.14 Terminal Package
	4.5.15 Velocity Package

	4.6 Sprig Packages
	4.6.1 Report Package
	4.6.2 Chart Package
	4.6.3 JFree Package
	4.6.4 Jasper Package

	4.7 Third Party Libraries

	5 Implementation Guidelines
	5.1 Coding Standard
	5.2 Implementing MBeans
	5.2.1 Standard MBeans
	5.2.2 Referable MBeans
	5.2.3 Adaptable MBeans
	5.2.4 Executable MBeans
	5.2.5 Dynamic MBeans

	5.3 Identifying MBeans
	5.3.1 Domain Name
	5.3.2 Key Property List
	5.3.3 Pattern Matching

	5.4 Accessing MBeans
	5.4.1 From Objects
	5.4.2 From Scripts and Templates

	5.5 Handling URLs
	5.5.1 Relative vs. Absolute URLs
	5.5.2 Context Path
	5.5.3 Path Info
	5.5.4 Object Parameters
	5.5.5 Query String
	5.5.6 Redirection
	5.5.7 Links

	5.6 Character Encoding
	5.6.1 URL Encoding
	5.6.2 Request Encoding
	5.6.3 Response Encoding
	5.6.4 Template Encoding
	5.6.5 Resource Encoding

	6 Configuration Notes
	6.1 Property Files
	6.2 BSF Scripts
	6.3 Templates
	6.4 Startup Sample
	6.4.1 HttpFilter
	6.4.2 TerminalFilter
	6.4.3 ContextToolFilter
	6.4.4 HostFilter
	6.4.5 LocaleFilter
	6.4.6 ExceptionFilter
	6.4.7 ServiceFilter
	6.4.8 MediaContentFilter
	6.4.9 CGIBinFilter
	6.4.10 HttpFormAuthFilter
	6.4.11 MediaContentKeyFilter
	6.4.12 TaskFilter
	6.4.13 SkinFilter
	6.4.14 FormFilter
	6.4.15 FlowFilter
	6.4.16 LayoutFilter
	6.4.17 ClosingFilter

