norther norther.org

Tammi Application Framework

Service API Specification

Version 6.1.13

Tammi Application Framework

Version 6.1.13

Service API Specification 23.03.2010
Revision History
Date Version Description Author
10.08.09 6.1.0 Initial version for release 6.1 imp
23.10.09 6.1.1 Updated with meta-data imp
23.10.09 6.1.2 Attribute trait descriptions imp
23.10.09 6.1.3 XML schemata added imp
26.10.09 6.1.4 Data type descriptions imp
26.10.09 6.1.5 KML integration imp
29.10.09 6.1.6 Variable index added imp
09.11.09 6.1.7 KML extended data revised imp
11.11.09 6.1.8 Response schema added imp
18.11.09 6.1.9 Parent flow added imp
26.11.09 6.1.10 Variable validation and flow labels imp
01.12.09 6.1.11 KML content type added imp
12.02.10 6.1.12 Attribute name and type added imp
23.03.10 6.1.13 More error handling added imp

Norther 2010

2 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

Table of Contents

N ' Y [T o o P 5
3 I o U T 1] = 5
A Y oo o 1T 5
1.3 Definitions, Acronyms and Abbreviations........ccooiiiiiiiiiiiiic 5
B B =T ol =Y V== P 5
T @ Y= YT PP 6

B o = ot o < P 7
2.1 JMX™ Managed BeanS. ..ottt 7

2.1.1 FOUNAAtiON SeIVICES. .ttt i ettt e ae s e e saraanaanaaneaneenneaaneerns 7
2.1.2 PipeS and FilEers. .ot 8
2.1.3 FIOWS @nNd SEEPS. .ttt e 8
2. 1.4 Variables. e e 8
20 A =Y 01 [0 1 0 1= 0) 9
G @{o] 3w g'e] I @] .01 .1 =1 2 Lo £ 10
00 1 2 P 10
0 s 1 2 = o o o 10
G T A O U= o) u o 1 Lo 10
G T G BN o g = = L= = = 10
3.1.4 Object Paramelers. .o e 10
07 U 1] [Y= T £ 11
G TG I =TSy T 1Y 11
0 0 o I PP 11
0 TR I 11
0 T T L1 | PP 11
0 T2 1 | P 11
0 0= T 1 11
3.4 SamPle CoOMMANAS. .ttt it 12
s T o 101 o = o P 12
G A = T = | o] | T =T =P 12
G B [0 Y] 1< o 12
34,4 Page il er. i e 12
T = 1= 1 =T 12
Y I oY= =T | o 12
3.4. 7 TerminalFi . e e e 12
G I T =1 ol 1= T 1 1 e 13
4 Data EXChange Formats. ..o e s 14
L /1 14
4.1.1 RESPONSE SCNEMIA. ittt e e e a e e e aaas 14
o N o o 1Y Y o = o o 1= P 15
4.1.3 Variable SChema...c.iiiii i 16
I 1 Y= T o 0 o L= 19
4.2 JSON (Not Implemented) . oo e raee s 20
4.2.1 JSON SamIlE. ettt e 21

Norther 2010 3 (28)

Tammi Application Framework Version 6.1.13

Service API Specification 23.03.2010

G [<] = Tl D= = 22
4.3.1 Variable Meta-AttribUtes. ... 22
4.3.2 Attribute Meta-Elements. ..o s 22
4.3.3 Attribute Meta-Attr D UEES .ttt ittt e s sy 23

G R A ol 1 0 10 < TR I = 13 23

L I =Y = Y0 26
S O] I N o == 26
L Y <Y = 1 = | [Y 1. 26

5 GIS INtegration. ..ot 27
o (<] 50 = 27
LI o Yoot Y [0 T Y o o 1 0 1 L 27
TG B LT | U | ST ot o 101U 27
I Y £ Y g 1= o [= 28

Norther 2010 4 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

1

1.1

1.2

Introduction

The Tammi Application Framework is a Java™ component based development
framework and run-time container for applications supporting web browsers,
mobile terminals and/or JFC based user interfaces. Tammi application
components can implement independent business logic themselves or act as
proxies to native libraries, remote programs and other kinds of manageable
resources.

Purpose

This document contains the service API specification of Tammi for programmatic
access. The technical specification of Tammi [Spec] provides a more
comprehensive description of the structure and functionality of the Tammi
framework itself.

Scope

The scope of this document is to describe mechanisms, structures and formats of
how remote clients may programmatically access applications and services
running on top of Tammi.

1.3 Definitions, Acronyms and Abbreviations

Term Explanation

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JMX Java™ Management Extensions

JRE Java™ Runtime Environment

JSON JavaScript Object Notation

JVM Java™ Virtual Machine

KML Keyhole Markup Language

MBean Managed Bean (a specific Java class)

MVC Model - View - Controller design pattern

REST Representational State Transfer

URI Uniform Resource Identifier

URL Uniform Resource Locator

VDEML Variable Data Exchange Markup Language

WML Wireless Markup Language

WUI Web User Interface

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

1.4 References

[Java] Name Java™ 2 Platform, Standard Edition

Link http://java.sun.com/j2se/index.html

Norther 2010 5 (28)

http://java.sun.com/j2se/index.html

Tammi Application Framework Version 6.1.13

Service API Specification

[IMX]

[JMX-Spec]

[JSON]

[KML]

[Multipart]

[REST]

[Servlet]

[Spec]

[URI]

Name
Link

Name
Link
Name
Link
Name
Link
Name
Link
Name
Link
Name
Link
Name
Link

Name
Link

1.5 Overview

The rest of the document provides a technical description of the Tammi service
API including an architecture overview, control commands, data exchange
formats and GIS integration.

Norther 2010

23.03.2010

Java™ Management Extensions (JMX™)
http://java.sun.com/products/JavaManagement/index.html

JMX™ Instrumentation and Agent Specification
http://jcp.org/aboutlava/communityprocess/final/jsr003

Introducing JSON
http://www.json.or

KML
http://code.google.com/intl/fi-FI/apis/kml

Returning Values from Forms: multipart/form-data
http://www.ietf.org/rfc/rfc2388.txt

Representational State Transfer
http://www.ics.uci.edu/~fieldin ubs/dissertation/top.htm

Java™ Servlet Technology
http://java.sun.com/products/serviet/index.html

Tammi Technical Specification
http://tammi.sourceforge.net/pdf/tammi-spec.pdf

Uniform Resource Identifier (URI): Generic Syntax
http://www.ietf.org/rfc/rfc3986.txt

6 (28)

http://www.ietf.org/rfc/rfc3986.txt
http://tammi.sourceforge.net/pdf/tammi-spec.pdf
http://java.sun.com/products/servlet/index.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ietf.org/rfc/rfc2388.txt
http://code.google.com/intl/fi-FI/apis/kml/
http://www.json.org/
http://jcp.org/aboutJava/communityprocess/final/jsr003/
http://java.sun.com/products/JavaManagement/index.html

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

2 Architecture

Tammi's architecture is compliant with Java™ Management Extensions
[IJMX-Spec]. Applications are formed by independent components plugged into
Tammi, and configured dynamically during start-up and run-time. Applications
follow the Model - View - Controller (MVC) design pattern separating
presentation from content. The presentation is implemented as templates in some
markup language interacting with content producers through context tools within
template contexts. A template engine parses the templates producing either user
interface pages for web browsers or data descriptions for further processing. A
filter chain mechanism [Servlet] controls the process. The templates are
organized into page flow steps managed by flow filters. The data content of each
step is presented as a set dynamic variables with a number of named attributes of
various types. The variables may be either local ones or imported from a
persistent storage, such as a relational database.

2.1 JMX™ Managed Beans

In JMX™ [JMX], application components are implemented as manageable
resources. The instrumentation of a given resource is provided by one or more
Managed Beans, or MBeans, which are Java objects implementing a specific
interface describing the attributes and operations they provide for accessing the
resources behind them.

The basic functionality of the Tammi framework is implemented as MBeans.
Third-party libraries has been integrated to the framework through proxy MBeans.
Correspondingly, new application components may be implemented directly as
MBeans, or they can be integrated through a proxy layer. A generic adapter
MBean may be applied to introduce any Java class to the framework without
modifying the code of the original class.

2.1.1 Foundation Services

Tammi foundation services comprises of base services required for Tammi to
operate, and supporting services providing common functionality for applications.
Base services include

* Broker supports both queries to any services registered to the MBean server
and direct shortcuts to services having an explicit alias maintained in a service
registry of the broker itself.

* Converter converts objects from different class types to others.

* Domain defines the default domain applied by Tammi in the MBean.
* Factory provides a standard interface to object factories.

* Loader is a dynamic class loader for both MBeans and other classes.
* PathFinder maintains mappings between keywords and folders.

* Pool adds object pool support to Factory.

* ResourceFinder is a resource finder extending the search mechanism of
java.util.ResourceBundle to handle partial locale qualifiers.

* Scripter evaluates and executes scripts within the scripting framework.
e Startup starts, stops and restarts the server.

Supporting services provide thread management, scheduling, authentication,
session management, connection handling, mail sending and other services.

Norther 2010 7 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

2.1.2 Pipes and Filters

Applications utilize Tammi's services typically from various filters organized into
filter chains. The filter chain pattern and filters are described in the Servlet API v.
2.3 specification. Tammi develops the pattern further by defining a set of
configurable filters implementing the basic application behavior. In Tammi, filters
are grouped into pipes, which are collections of consecutive filters executed in
configured order. Pipes may form larger networks, within which branch filters
control the request flow.

Filters have two variations, plain filters and key filters. Plain filters are applied to
every request running through it. Key filters have a configurable key, which may
appear in the request to activate the filter. The key can have an associated value
specifying further the actions to take by the corresponding filter.

Plain filters include

e HttpFilter parses HTTP protocol requests.

* RepositoryFilter manages DB connections.

* ResourceFilter provides localized content.

» Variations of AuthenticationFilter authenticate users.

* ChartFilter for generates charts.

e ReportFilter for generates reports.

e ClosingFilter terminates the filter chain and closes the response.

Key filters provide branching control, terminal detection, styled skins, template

parsing, form management, page flow control and other filtering.
2.1.3 Flows and Steps

The markup templates producing the web pages of a Tammi application are
organized into page flows consisting of one or more flow steps. The flows of the
application form a hierarchical structure, which can be browsed either
interactively through the links generated automatically on web pages or
programmatically by applying control commands of the Tammi service API.

Each step has various properties, including markup templates, executable actions,
and data containers. The data containers are implemented as dynamic MBeans
called variables.

The configuration of flows and steps is maintained by a flow filter, through which
to control their execution, too. An application may have more than one flow filter
in its separate pipes to build larger entities.

2.1.4 Variables

A variable defines a dynamic container of attributes. Instances of
VariableAttributeInfo define one attribute each. Lists of attribute instances
are registered to a variableRegistry with a named type.

The variable registry maintains meta-data of attributes of each registered
attribute list. The registered type of each attribute list is treated as the virtual
class name of the corresponding variable.

Norther 2010 8 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

2.2

Deployment

Tammi is running on an JMX agent server connected optionally to a separate web
server through appropriate protocol connectors. Clients can access Tammi either
directly through an HTTP connector or via the separate web server. Stand-alone
clients can connect to Tammi through a graphical user interface.

An optional database server can be accessed through database service brokers
available for vendor specific database implementations.

Application components implement their manageable resources as MBeans
registered to the MBean server of the JXM agent. Applications can reside in the
same JVM as Tammi, as local applications on the same host, or as remote
applications on a remote server. In the two latter cases, the application
components are implemented as proxy MBeans for accessing remote application
resources.

Web Container

Startup JSP .
% Servlet % Engire (Optlonan

~ | I

e

Browser

Tammi Framework

Serviet
Connector

Fipes and
Filters

Client

Client /
-
[~
HTTP P JMX Framework
MIDP Conneactor [FT Services

e I

Server i

Alone
Client

JFE /’ T Application
Interface Services
Stand- —

|
Velocity D.Java JFree '0JB “Application T Application 2
Template Java Report Persistence Application Application
Engire Interpreter Engine Broker Corponent Praxy
f f f
| |
Templates Scripts Reports Database Native
Application

Figure 2.1 The deployment diagram

Norther 2010 9 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

3 Control Commands

The filter chain mechanism of Tammi is controlled by the representational state
transfer [REST] pattern. The key filters maintaining the state and providing the
services of Tammi applications are activated by filter specific key-value pairs
acting as control commands. The commands may be entered in the URL path info
of a request, within the query string of a GET request or as form parameters in a
POST request.

3.1 URLs

A URL represents a Uniform Resource Locator, a pointer to a "resource" on the
HTTP and other Internet protocols. A URI represents a Uniform Resource
Identifier, which is a super-set of a URL not limited to locations but rather
identifying resources with a name or a set of attributes. The difference between
the two is not remarkable [URI].

The part of the URL following the scheme, host name and port specify the URL
path. A semicolon (";") separates URL object parameters from the actual URL
path and the components after a question mark ("?") specify a query string.

Also the components of the actual URL path have different meanings. The division
is based on the servlet specification [Servilet]. The URL path can be divided into
two parts:

* Context path specifies the external context of servlet applications.

* Path info contains application specific information for pipes and filters.

3.1.1 URL Path Info

The path info contains any application specific information associated with the
URL the client sent when it made a request. The path info follows the context
path but precedes the object parameters and query string. By default, Tammi is
configured to parse the path info as a set of key-value pairs as <key>/<value>.

If the value itself contains path separators ("/"), the key must have an indicator
specifying the total number of items and slashes minus one to be included in the
value as <key>-<n>/<value>.

3.1.2 Query String

A query string is optionally contained in the request after the path info and object
parameters. It contains a set of key-value pairs as <key>=<value> separated by
ampersands ("&"). It provides an alternate way to enter control commands.

3.1.3 Form Parameters

Control commands may also be entered in the body of the request as a set of
key-value pairs as <key>=<value> separated by ampersands ("&"). The method

of such a request must be POST and it its content type:
application/x-www-form-urlencoded

3.1.4 Object Parameters

Object parameters are used internally by the HTTP services of Tammi. E.g. the
session id for clients not supporting cookies is encoded in object parameters as
jsessionid=<id>.

Norther 2010 10 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

3.2 Uploads

If the control commands contain large blocks of data to be uploaded to the server,
they can be sent in the body of a POST request as a multi-part form-data
[Multipart]. The content type of such a request must be multipart/form-data.
Files in the specified data exchange format represent a typical example of such
data. If the size of the file is compact, it may be uploaded in a normal POST
request, too, but then its content must be encoded [URI].

3.3 Responses

The response to control commands depends on the actual commands and the
specified content type. Tammi produces responses in five different markup
languages: HTML, XHTML, WML, XML and KML. The format of the response is
selected automatically based on content types of specified by the accept header
of the request. The desired format may also be specified explicitly by a default
command "x" for a TerminalFilter. The value of the command must be the file
extension of the corresponding content type.

3.3.1 HTML

The HTML content type is
text/html

and the corresponding extension
html

3.3.2 XHTML
The XHTML content type is

application/vnd.wap.xhtml+xml

and the corresponding extension
whtml

3.3.3 WML
The WML content type is

text/vnd.wap.wml

and the corresponding extension

wml

3.3.4 XML
The XML content type is

application/xml

and the corresponding extension

vdeml

See chapter Data Exchange Formats for a more detailed description of XML
responses.

3.3.5 KML
The KML content type is

Norther 2010 11 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

application/vnd.google-earth.kml+xml

and the corresponding extension
km1l

See chapter GIS Integration for a more detailed description of KML.

3.4 Sample Commands

A typical application is formed by one or more pipes branching at one or more
levels. In addition, one server may serve one or more hosts.

3.4.1 HostFilter

The HostFilter is the topmost branch filter forwarding requests to specific pipes
based on the requested host name. The host may also be specified by a default
command "host".

3.4.2 BranchfFilters

ServiceFilter, PipeFilter and LinkFilter are lower level branch filters
forwarding requests based on default commands "at", "in" and "link" respectively.
The names of the corresponding branches is application dependent.

3.4.3 FlowfFilter

The FlowFilter maintains the page flow under work and controls the execution
of the current step. The flow and step are selected by a default command "flow".

A flow is identified by its name, which is relative to its parent flow. A step is
identified either by its name or by its index within its owning flow as
<flow_name>-<step_index>. An absolute flow path may be applied to refer to
arbitrary flows as /<flow-name_1>/<flow-name_2>/.../<flow_name_n>.

3.4.4 PageFilter

Some flow steps accept markup templates outside of their own configuration. The
PageFilter renders templates, the names of which can be explicitly specified
with a default command "page".

3.4.5 TaskFilter
In addition to step specific actions, named tasks may be activated by the
TaskFilter. The name of the task is specified with a default command "task".
3.4.6 LocaleFilter

The locale to apply is maintained by the LocaleFilter. It can be explicitly
specified with a default command "lang". The value of the locale is its string
representation as <lang>_<country>.

3.4.7 TerminalFilter

The TerminalFilter defines the user terminal type based on user agent
information of requests and selects an appropriate MIME type for the
corresponding responses. An explicit content type is specified with a default
command "x".

Norther 2010 12 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

3.5 Error Handling

Command execution may fail at three different levels. If the requested operation
is unknown, forbidden or cannot for some other reason be activated at all, the
operation is canceled and the corresponding response with an applicable HTTP
status code and error message is returned. See the Response Schema for details.

If the command is valid, but the corresponding flow fails to finish its execution
successfully due to missing, erroneous or illegal arguments, failure exceptions are
included in the flow part of the standard response. See the Flow Schema for
details.

When attribute values of a variable of the command are not valid, the validity of
the corresponding variable is set to INVALID and validation exceptions are
included in the attribute part of the standard response. See the Variable Schema
for details.

Norther 2010 13 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

4

4.1

Data Exchange Formats

The XML format applied to data exchange between a programmatic client and
Tammi is based on the configured page flow structure of the respective
application. The client controls the application with commands to open the
desired pipe, flow and step. Each step returns an XML coded page corresponding
to its data content and programmed functionality.

The XML language is called Variable Data Exchange Language and its file
extension is vdeml. The XML page describes the current flow structure and
contains the variable list of the current step. The flow structure and the variable
list have their own XML schema and are represented in separate namespaces
within the XML page. Both are enclosed within a response element containing the
status of any requested operation.

The flow structure consists of the selected flow, the name of its parent flow, the
index of its current step and a a list of other steps within the flow.

The variable list contains variable instances, instance attributes and attribute
values. An extended variable format includes the meta-data of the variables, too.
The meta-data is included by adding a parameter meta with a value true to the
corresponding request.

JavaScript Object Notation [JSON] may be supported as an alternate data
exchange format.

XML

The XML format is applied by default. The response data consists of both flow
structure and variable list, the upload data may contain only the variable list
without meta-data.

For variable specific updates, only the values of changed attributes are submitted
as form parameters of a POST request. The names of attributes are applied to
parameter names prefixed with the corresponding variable index and a
colon. The changed values are applied to parameter values.

4.1.1 Response Schema

<?xml version="1.0"?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://tammi.sourceforge.net/pdf/tammi-api.pdf"
xmlns="http://tammi.sourceforge.net/pdf/tammi-api.pdf">

<xs:element

name="Response"
type="ResponseType">

</xs:element>

<xs:complexType

name="ResponseType">

<xs:sequence>
<xs:element
name="Message"
maxOccurs="unbounded">
</xs:element>

<xs:element
name="Authenticated"
type="AuthenticatedType"
minOccurs="0">
</xs:element>
</xs:sequence>

Norther 2010 14 (28)

http://tammi.sourceforge.net/pdf/tammi-api.pdf
http://tammi.sourceforge.net/pdf/tammi-api.pdf
http://www.w3.org/2001/XMLSchema

Tammi Application Framework
Service API Specification

<xs:attribute
name="status"
type="xs:positivelInteger"
use="required" />

<xs:attribute
name="identity"
type="xs:token" />
</xs:complexType>

<xs:complexType
name="AuthenticatedType">

<xs:sequence>
<xs:element
name="Attribute"
type="AttributeType"
maxOccurs="unbounded">
</xs:element>
</xs:sequence>

<xs:attribute
name="state"
type="xs:boolean"
use="required" />
</xs:complexType>

<xs:complexType
name="AttributeType">

<xs:attribute
name="name"
type="xs:token"
use="required" />

<xs:attribute
name="type"
type="xs:token"
use="required" />

<xs:attribute
name="value"
type="xs:string"
use="required" />
</xs:complexType>
</xs:schema>

4.1.2 Flow Schema

<?xml version="1.0"?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://tammi.sourceforge.net/pdf/tammi-api

.pdf"

xmlns="http://tammi.sourceforge.net/pdf/tammi-api.pdf">

<xs:element
name="Flow"
type="FlowType">

</xs:element>

<xs:complexType
name="FlowType">

<xs:sequence>
<xs:element
name="Step"
type="StepType"
maxOccurs="unbounded">
</xs:element>

<xs:element
name="Exception"
type="ExceptionType"
minOccurs="0"
maxOccurs="unbounded">
</xs:sequence>

<xs:attribute
name="name"
type="xs:token"
use="required" />

Norther 2010

Version 6.1.13
23.03.2010

15 (28)

http://tammi.sourceforge.net/pdf/tammi-api.pdf
http://tammi.sourceforge.net/pdf/tammi-api.pdf
http://www.w3.org/2001/XMLSchema

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

<xs:attribute
name="label"
type="xs:string" />

<xs:attribute
name="parentName"
type="xs:token"
use="required" />

<xs:attribute
name="parentLabel"
type="xs:string" />

<xs:attribute
name="step"
type="xs:positivelInteger"
use="required" />
</xs:complexType>

<xs:complexType
name="StepType">

<xs:attribute
name="name"
type="xs:token"
use="required" />

<xs:attribute
name="label"
type="xs:token"
use="required" />

<xs:attribute
name="index"
type="xs:positivelInteger"
use="required" />
</xs:complexType>

<xs:complexType
name="ExceptionType">

<xs:simpleContent>
<xs:extension
base="xs:string">

<xs:attribute
name="type"
type="xs:string"
use="required" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:schema>

4.1.3 Variable Schema

<?xml version="1.0"?2>

<xs:schema
xmlns:xs="http://www.w3.0rq/2001/XMLSchema"
targetNamespace="http://tammi.sourceforge.net/pdf/tammi-api.pdf"
xmlns="http://tammi.sourceforge.net/pdf/tammi-api.pdf">

<xs:element
name="VariableList"
type="VariableListType">
</xs:element>

<xs:complexType
name="VariableListType">

<xs:sequence>
<xs:element
name="Variable"
type="VariableType"
minOccurs="0"
maxOccurs="unbounded">
</xs:element>
</xs:sequence>
</xs:complexType>

Norther 2010 16 (28)

http://tammi.sourceforge.net/pdf/tammi-api.pdf
http://tammi.sourceforge.net/pdf/tammi-api.pdf
http://www.w3.org/2001/XMLSchema

Tammi Application Framework
Service API Specification

<xs:complexType
name="VariableType">

<xs

Norther 2010

<xXs:sequence>

<Xs:

element
name="Attribute"
type="AttributeType"
minOccurs="0"
maxOccurs="unbounded">

</xs:element>
</xs:sequence>

<xs:attribute
name="index"
type="xs:integer"
use=

="required" />

<xs:attribute
name="id"

type="xs:long

use="required" />

<xs:attribute
name="type"
type="xs:token"
use="required" />

<xs:attribute
name="validity"
type="xs:token"
use="required">

<XSs:

simpleType>
<xs:restriction
base="xs:token">

<xs:enumeration
value="REJECTED" />
<xs:enumeration
value="INITIAL"/>
<xs:enumeration
value="INVALID"/>
<xs:enumeration
value="VALID"/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>
</xs:complexType>

:complexType

name="AttributeType">

<xs:sequence>

<xs

:choice>

<xs:element
name="Value" />

<xs:element
name="Values"
type="ValuesType" />

</xs:choice>

<xs

:choice>

<xs:element
name="DefaultValue"
minOccurs="0" />

<xs:element
name="DefaultValues"
minOccurs="0"
type="ValuesType" />

</xs:choice>

<xs

<XSs

relement

name="MinValue"
minOccurs="0" />

relement

name="MaxValue"
minOccurs="0" />

Version 6.1.13
23.03.2010

17 (28)

Tammi Application Framework
Service API Specification

<xs:element
name="Enumeration"
type="EnumerationType"
minOccurs="0" />

<xs:element
name="Exception"
type="ExceptionType"
minOccurs="0" />

</xs:sequence>

<xXSs:

<xs

<Xs

<xs

<XSs

<xXSs

<Xs

<xs

<XSs

<xXSs

attribute
name="name"
type="xs:token"
use="required" />

rattribute

name="type"
type="xs:token"
use="required" />

rattribute

name="group"
type="xs:string" />

:attribute

name="description"
type="xs:string" />

rattribute

name="detail"
type="xs:string" />

rattribute

name="qualifier"
type="xs:string" />

rattribute

name="pattern"
type="xs:string" />

:rattribute

name="traits"
type="xs:integer" />

rattribute

name="minSize"
type="xs:integer" />

rattribute

name="maxSize"
type="xs:integer" />

</xs:complexType>

<xs:complexType
name="ValuesType">

<xXSs:

sequence>

<xs:element
name="Item"
minOccurs="0"
maxOccurs="unbounded"

</xs:sequence>
</xs:complexType>

<xs:complexType
name="EnumerationType">

<xXSs:

sequence>

<xs:element
name="Enum"
type="EnumType"
minOccurs="0"
maxOccurs="unbounded"

</xs:sequence>
</xs:complexType>

<xs:complexType
name="EnumType">

<xs:

simpleContent>
<xs:extension
base="xs:string">

Norther 2010

/>

/>

Version 6.1.13
23.03.2010

18 (28)

Tammi Application Framework
Service API Specification

<xs:attribute
name="name"
type="xs:string"
use="required" />

<xs:attribute
name="label"
type="xs:string"
use="required" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>

<xs:complexType
name="ExceptionType">

<xs:simpleContent>
<xs:extension
base="xs:string">

<xs:attribute
name="type"
type="xs:string"
use="required" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:schema>

4.1.4 XML Sample

<Response
status="200">

<Message>0OK</Message>

<flow:Flow

xmlns:flow="http://tammi.norther.org"

name="flow 1"
parentName="parent name"
step="index">

<var:Variablelist

xmlns:var="http://tammi.norther.org">

<var:Variable
index="0"
id="id 1"
type="type 1"
validity="validity 1">

<var:Attribute
name="name 1 1"
type="type 1 1">

<var:Value>value_ 1 1</var:Value>

<var:Attribute
name="name 1 2"
type="type 1 2"/>

<var:Value>value 1 2</var:Value>

<var:Attribute
name="name 1 n"
type="type 1 n"/>

<var:Value>value_ 1 n</var:Value>

</var:Variable>

Norther 2010

Version 6.1.13
23.03.2010

19 (28)

http://tammi.norther.org/
http://tammi.norther.org/

Tammi Application Framework Version 6.1.13

Service API Specification

<var:Variable
index="1"
id="id 2"
type="type 2"

validity="validity 2">

<var:Attribute
name="name 2 1"
type="type 2 1"/>

<var:Value>value 2 1</var:Value>

<var:Attribute
name="name 2 2"
type="type 2 2"/>

<var:Value>value 2 2</var:Value>

<var:Attribute
name="name 2 n"
type="type 2 n"/>

<var:Value>value 2 n</var:Value>
</var:Variable>

<var:Variable
index="n
id="id n"
type="type n"

validity="validity n">

<var:Attribute
name="name n 1"
type="type n 1"/>

<var:Value>value n 1</var:Value>

<var:Attribute
name="name n 2"
type="type n 2"/>

<var:Value>value n 2</var:Value>

<var:Attribute
name="name n n"
type="type n n"/>

<var:Value>value n n</var:Value>
</var:Variable>
</var:VariableList>

<flow:Step
name="step_ 1"
index="index 1"/>

<flow:Step
name="step 2"
index="index 2"/>

<flow:Step
name="step n"
index="index n"/>
</flow:Flow>
</Response>

4.2 JSON (Not Implemented)

The JSON format is specifically targeted to JavaScript programming.

Norther 2010

23.03.2010

20 (28)

Tammi Application Framework
Service API Specification

4.2.1 JSON Sample

{

"Response": {
"status": "200",
"Message": "OK",
"Flow": {
"name": "flow 1",
"parentName": "parent name",
"step": "index",
"VariableList": {
"Variable": [
{ llindexll: llOll’
Hid"; Hid_l",
"type": "type 1",
"validity": validity 1",
"Attribute": [
{ "name": "name 1 1",
"type": "type 1 17,
"Value": "value 1 1"
by
{ "name": "name 1 2",
thpeH: thpe_2_2 H,
"Value": "value 2 2"
}I
{ "name": "name 1 n",
"type": "type 1 n",
"Value": "value 1 n"
}
1},
{ llindexll: lllll’
Hid"; Hid_2",
lltypell: lltypei2 ll,
"validity": "validity 2",
"Attribute": [
{ "name": "name 2 1",
lltypell: lltypeizil ll,
"Value": "value 2 1"
by
{ "name": "name 2 2",
thpeH: thpe_2_2 H,
"Value": "value 2 2"
}I
{ "name": "name 2 n",
lltypell: lltypeizinll’
"Value": "value_ 2 n"
}
1},

Norther 2010

Version 6.1.13
23.03.2010

21 (28)

Tammi Application Framework Version 6.1.13

Service API Specification 23.03.2010
{ llindexll: llnll’
nidg": "id_n",
"type": "type n",
"validity": "validity n",
"Attribute": [
{ "name": "name n 1",
"type": "type n 17,
"Value": "value n_ 1"
b
{ "name": "name n 2",
”type": "type_n_Z",
"Value": "value n 2"
}I
{ "name": "name n n",
"type": "type n n",
"Value": "value n _n"
}
1}
]
}I
"Step": [
{ "name": "name 1",
"index": "index 1" },
{ "name": "name 2",
"index: "index 2" 1},
{ "name": "name n",
"index": "index n" }

H}

4.3 Meta-Data

If the meta-data of the data is requested instead of values, an extended set of
optional sub-elements and attributes may be provided for <attribute> elements.

4.3.1 Variable Meta-Attributes

The index of the variable within the variable list:

index="index"
The unique id of the variable:
id="id"
The class type of the variable:
type="type"
The validity of the variable after modifications:
validity="VALIDITY"

REJECTED = not modifiable within the current context
INITIAL = not yet modified within the current context
INVALID modified, but not all values were accepted
VALID = modified and wvalid

4.3.2 Attribute Meta-Elements

The default value of the attribute:
<DefaultValue>value</DefaultValue>

Norther 2010 22 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

The min value of the attribute:
<MinValue>value</MinValue>

The max value of the attribute:
<MaxValue>value</MaxValue>

The allowed (enumerated) values of the attribute:

<Enumeration>
<Enum name="name 1" label="label 1">value 1</Enum>
<Enum name="name 2" label="label 2">value 2</Enum>
<Enum name="name n" label="label_n">value_n</Enum>
</Enumeration>

An optional validation exception during modifications:

<Exception type="type">message</Exception>

4.3.3 Attribute Meta-Attributes

The name of the attribute:
name="name"

The data type of the attribute:
type="type"

The group of the attribute:
group="group"

The description of the attribute:
description="description"

The detail of the attribute:
detail="detail"

The qualifier of the attribute:
qualifier="qualifier"

The conversion pattern of the attribute:
pattern="pattern"

The traits of the attribute:
traits="traits"

The min size of the string attribute:
minSize="min"

The max size of the string attribute:

maxSize="max"

4.3.4 Attribute Traits

Attribute traits define a set of on/off like meta-features to the attribute. All traits
are exchanged in one integer representing a bit mask where each bit defines the
state of a particular trait:

READABLE trait (0x00000001)

Non-readable attributes are typically passwords or other classified data and their
values should be shadowed when displayed.

WRITABLE trait (0x00000002)

Norther 2010 23 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

Non-writable attributes cannot be modified by ordinary users through normal user
interfaces.

CLONEABLE trait (0x00000004)

Cloneable attributes support cloning of their values.
NOT MANDATORY trait (0x00000008)
Mandatory attributes must have or must be given a value other than null.
Attributes both mandatory and optional may keep their original null values.
NOT TRANSIENT trait (0x00000010)
Changes to values of transient attributes should not be saved by the applied
persistence mechanisms.
NOT SERIALIZED trait (0x00000020)
Values of serialized attributes should be saved as strings by the applied
persistence mechanisms.
NOT INTERACTIVE trait (0x00000040)
Changes to values of interactive attributes should redisplay any interactive views
related to the attribute.
TRACED trait (0x00000080)
Traceable attributes should maintain timestamps of their last modifications
accessed through the methods of the Traceable interface.
LOCALIZED trait (0x00000100)

Values of localized attributes should be translated before displaying.
ORDERED trait (0x00000200)
Values of ordered array attributes and enumerations should be sorted before
assignment. The associated comparator must be applied, if any.
SORTED trait (0x00000400)
String values of sorted array attributes and enumerations of sorted attributes

should be sorted after localization. The associated comparator must be applied, if
any.

TRIMMED trait (0x00000800)

String representations of trimmed attributes are trimmed before assignments and
conversions.

STRIPPED trait (0x00001000)

Null elements of stripped array attributes are stripped before assignments and
conversions.

BLANK ACCEPTED trait (0x00002000)
Note that this option is applied to values given as string arrays.

This hack helps to solve the null problem when assigning HTML form based
values.

EMPTY ACCEPTED trait (0x00004000)

Note that this option is applied to mandatory array attributes. If true, arrays of
zero length are accepted as non-null values.

LOCAL trait (0x00008000)

Local attributes should not be imported or exported.

Norther 2010 24 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

VISIBLE trait (0x00010000)

Visible attributes are displayed in interactive views.
DISABLED trait (0x00020000)

Disabled attributes are temporarily non-writable in interactive views.
OPTIONAL trait (0x00040000)

Optional attributes are validated only when their value is actually modified.
RECURSIVE trait (0x00080000)

Recursive attributes should be validated recursively.
STREAM trait (0x00100000)

Stream attributes may hold exceptionally large values, like mediafile contents.
Once set to true, it can't be cleared.

REFERENCE trait (0x00200000)

Values of reference attributes may be proxies and require specific treatment when
persisted. Once set to true, it can't be cleared.

COLLECTION trait (0x00400000)

Values of collection attributes may require specific treatment when persisted.
Once set to true, it can't be cleared.

PRIMARY trait (0x00800000)
Values of primary attributes should uniquely identify the corresponding variable.
Once set to true, it can't be cleared.

FOREIGN trait (0x01000000)

Values of foreign attributes should reference primary attributes of other variables.
Once set to true, it can't be cleared.

FINAL trait (0x02000000)

Final attributes can't be replaced by inherited attributes. Once set to true, it can't
be cleared.

MARKUP trait (0x04000000)

Markup attributes contain SGML encoded content.
ENUMERATED trait (0x08000000)

Enumerated attributes may have an enumerated list of allowable values.

Note that attributes of enum type have an automatically generated enumeration if
their enumerated trait is NOT set. Localized attributes apply a lowercase key
formed by the plain enum type followed by the enum value and a suffix
(<type>.<value>.enum).

Non-localized attributes apply enumeration values with underscores replaced by
spaces as keys.

DESCRIPTOR trait (0x10000000)

Descriptor attributes describe data of some other element. The trait may be
applied to dynamically generate variables from meta variables.

SELECTOR trait (0x20000000)

Selector attributes select data of some other element. The trait may be applied to
automatically generate nested user interfaces.

MBEAN trait (0x40000000)

Norther 2010 25 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

MBean attributes contain MBean references as values. Values of MBean attributes
should be registered and unregistered together with their owner variable.

IMMUTABLE trait (0x80000000)

Immutable attributes cannot be modified.

4.4 Data types

The data types of attributes are represented as Java class names. Also Java
primitive types are represented by their corresponding object types. With array
types, the Java array notation is applied, f.ex. [Ljava.lang.Integer;.

In principal, any Java class may be applied to attributes. In practice, most
applications restrict their data types to those that can be persisted to an SQL
based relational data base system.

4.4.1 SQL Types

For persistent attributes, the following mappings are used between SQL types and

Java types:
BIT = java.lang.Boolean (boolean)
BIT VARYING = [Ljava.lang.Byte; ([B)

BINARY LARGE OBJECT = java.sgl.Blob
CHARACTER = java.lang.String
CHARACTER VARYING = java.lang.String or java.lang.StringBuilder
CHARACTER LARGE OBJECT = java.sqgl.Clob
BOOLEAN = java.lang.Boolean (boolean)
SMALLINT = java.lang.Short (short)
INTEGER = java.lang.Integer (int)
BIGINT = java.lang.Long (long)
FLOAT = java.lang.Double (double)
DOUBLE = java.lang.Double (double)
NUMERIC = java.math.BigDecimal
DECIMAL = java.math.BigDecimal
DATE = java.util.Date
With location attributes, a custom type is applied:

org.norther.tammi.acorn.lang.Location

4.4.2 Serialization

Attribute values are serialized to strings during data exchange. Localization is not
applied, but numbers and other types are represented unformatted. However,
with date attributes the ISO 8601 format (yyyy-MM-dd HH:MM:SS) is applied.

Location attribute values are represented as pairs of decimal latitude and
longitude coordinates separated by a space (1at.dddddd lon.dddddd).

Norther 2010 26 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

5

5.1

5.2

5.3

GIS Integration

For applications that need to integrate to geographic information systems (GIS),
the vdeml data may be embedded into a file encoded in Keyhole Markup
Language (KML) [KML] supported in one or another form in majority of GIS
software.

As KML is originally an XML file format used to display geographic data in an
Google's earth and map browsers, its main focus is on geocoordinates and visual
presentation.

Locations are represented as <Placemark> elements within a <Document> element
defining their position on the earth's surface with geocoordinates inside a <point>
element. In addition to coordinates, each <placemark> has a name and an
optional description. Paths are represented as a list of geocoordinates inside a
<LineString> element.

A <Placemark> may also have user-supplied content inside a <description>
element that appears in the description balloon of Google browsers. For data
exchange, a more structured <ExtendedData> element is more applicable. The
contents of the element may be a set of untyped <Data> elements, typed custom
data inside a <SchemaData> element, custom XML elements or a combination of
the three.

Response

The response element containing the status of the requested operation is
represented inside of the <ExtendedData> element of the <Document> element in
its own namespace named res.

Location Attributes

Tammi supports KML integration for variables represented as <pPlacemark>s and
having one and only one location attribute, which contains either a value
represented as a <point>, or an array of values represented as a <LineString>,
or a closed array of values represented as a <LineRing>. In addition, the variable
should contain a string attribute named "Name", the value of which is applied to
the <name> field of the <Placemark>.

Feature Attributes

Other visible attributes of variables are represented in KML integration as
<SimpleData> elements within the <schemaData> element of the <ExtendedData>
element. The types and names of attributes are represented as <SimpleField>
elements within a separate <schema> element. These feature attributes appear
automatically in the description balloon of Google browsers.

Elements of arrays have their own <SimpleData> and <SimpleSchema>
elements with name attributes suffixed with the index of the corresponding array
element.

Norther 2010 27 (28)

Tammi Application Framework Version 6.1.13
Service API Specification 23.03.2010

5.4 Variable List

For all attributes and full meta-data, the vdeml <variableList> element may be
included in the <ExtendedData> element in its own namespace named var. In
KML integration, the flow structure is not included in data exchange and each
variable forms its own <variableList> element with only one <variable>
element within the list. Note that the <Attribute> elements of the variable
include also the location attributes and feature attributes represented already
inside other elements of the corresponding <pPlacemark>. The XML formatted
variable list is not displayed in browsers but is provided solely for data exchange
purposes.

Norther 2010 28 (28)

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Definitions, Acronyms and Abbreviations
	1.4 References
	1.5 Overview

	2 Architecture
	2.1 JMX™ Managed Beans
	2.1.1 Foundation Services
	2.1.2 Pipes and Filters
	2.1.3 Flows and Steps
	2.1.4 Variables

	2.2 Deployment

	3 Control Commands
	3.1 URLs
	3.1.1 URL Path Info
	3.1.2 Query String
	3.1.3 Form Parameters
	3.1.4 Object Parameters

	3.2 Uploads
	3.3 Responses
	3.3.1 HTML
	3.3.2 XHTML
	3.3.3 WML
	3.3.4 XML
	3.3.5 KML

	3.4 Sample Commands
	3.4.1 HostFilter
	3.4.2 BranchFilters
	3.4.3 FlowFilter
	3.4.4 PageFilter
	3.4.5 TaskFilter
	3.4.6 LocaleFilter
	3.4.7 TerminalFilter

	3.5 Error Handling

	4 Data Exchange Formats
	4.1 XML
	4.1.1 Response Schema
	4.1.2 Flow Schema
	4.1.3 Variable Schema
	4.1.4 XML Sample

	4.2 JSON (Not Implemented)
	4.2.1 JSON Sample

	4.3 Meta-Data
	4.3.1 Variable Meta-Attributes
	4.3.2 Attribute Meta-Elements
	4.3.3 Attribute Meta-Attributes
	4.3.4 Attribute Traits

	4.4 Data types
	4.4.1 SQL Types
	4.4.2 Serialization

	5 GIS Integration
	5.1 Response
	5.2 Location Attributes
	5.3 Feature Attributes
	5.4 Variable List

