
norther.org

Tammi Application Framework

Java Coding Standard

Version 1.5



Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

Revision History
Date Version Description Author

02.11.02 1.0 First version imp

15.12.02 1.1 Minor corrections map

03.07.03 1.2 Rational link corrected imp

25.09.03 1.3 Synced with Eclipse imp

19.10.03 1.4 Synced with Eclipse 3.0 imp

23.03.05 1.5 Updated skin imp

Norther 2002 2 (28)



Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

Table of Contents
1 Introduction.......................................................................................................5

1.1 Purpose.......................................................................................................5

1.2 Scope.........................................................................................................5

1.3 Acknowledgments........................................................................................5

1.4 References..................................................................................................5

1.5 Principles....................................................................................................6

1.5.1 Minimal surprise....................................................................................6
1.5.2 Single point of maintenance....................................................................6
1.5.3 Minimal noise........................................................................................6

2 Code Organization and Style.................................................................................7

2.1 Packages.....................................................................................................7

2.1.1 Packaging approach...............................................................................7
2.1.2 Example of packaging............................................................................7

2.2 Source files..................................................................................................8

2.2.1 Beginning comments..............................................................................8
2.2.2 Package and import statements...............................................................8
2.2.3 Class and interface declarations...............................................................9

2.3 Code style...................................................................................................9

2.3.1 Indention of blocks................................................................................9
2.3.2 Indention of member function declarations...............................................9
2.3.3 Line length..........................................................................................10
2.3.4 Wrapping lines....................................................................................10
2.3.5 Blank spaces.......................................................................................11

3 Comments........................................................................................................13

3.1 General recommendations...........................................................................13

3.2 Types of comments.....................................................................................13

3.2.1 Documentation comments.....................................................................13
3.2.2 C-style comments................................................................................14
3.2.3 Single line comments...........................................................................14

3.3 Javadoc.....................................................................................................14

3.3.1 Document classes and member functions................................................14
3.3.2 General form of a doc comment.............................................................15
3.3.3 Descriptions........................................................................................15
3.3.4 Tag conventions..................................................................................15

4 Naming............................................................................................................18

4.1 Naming packages.......................................................................................18

4.2 Naming classes..........................................................................................18

4.3 Naming interfaces.......................................................................................18

4.4 Naming member functions...........................................................................19

4.4.1 Naming accessor member functions.......................................................19
4.4.2 Naming constructors............................................................................19

Norther 2002 3 (28)



Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

4.5 Naming fields.............................................................................................19

4.5.1 Naming constants ...............................................................................19

4.6 Naming variables........................................................................................20

4.6.1 Naming streams .................................................................................20
4.6.2 Naming loop counters ..........................................................................20
4.6.3 Naming exception objects ....................................................................20
4.6.4 Naming parameters .............................................................................20

4.7 Do not "hide" names...................................................................................21

5 Declarations.....................................................................................................22

5.1 Class declarations ......................................................................................22

5.2 Minimize the public and protected interface ...................................................22

5.2.1 Learnability.........................................................................................22
5.2.2 Reduced coupling.................................................................................22
5.2.3 Greater flexibility.................................................................................22

5.3 Member function accessibility.......................................................................22

5.4 Field accessibility........................................................................................23

6 Expressions and Statements...............................................................................25

6.1 Avoid nesting expressions too deeply............................................................25

6.2 Specify the order of operations.....................................................................25

6.3 Use accessor member functions....................................................................25

6.4 Import classes explicitly..............................................................................25

7 Error Handling and Exceptions............................................................................26

7.1 Use exceptions to handle errors....................................................................26

7.2 Minimize the number of exceptions exported from a given abstraction...............26

7.3 Do not use exceptions for frequent, anticipated events....................................26

7.4 Do not use exceptions to implement control structures....................................26

7.5 Make sure status codes have an appropriate value..........................................27

7.6 Perform safety checks locally; do not expect your client to do so......................27

8 Summary.........................................................................................................28

8.1 Java coding conventions..............................................................................28

8.2 Java documentation conventions..................................................................28

8.3 Java naming conventions.............................................................................28

Norther 2002 4 (28)



Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

1 Introduction

1.1 Purpose
This document describes the standard Java coding conventions applied in 
development of the Tammi Application Framework. The goal has been to write 
code that is easy to understand, maintain, reuse and enhance. By following a 
common standard, the development team creates a consistent code base, which 
significantly improves its productivity especially when the code base grows larger.

1.2 Scope
As code will exist after original developers have moved on to other projects, it is 
important to ensure that transition of code to new developers goes on smoothly. 
Code that is difficult to understand runs the risk of being scrapped and rewritten.

Inexperienced developers, and cowboys who do not know any better, will often 
fight having to follow standards. They claim they can code faster if they do it their 
own way. Pure hogwash. They MIGHT be able to get code out the door faster, but 
I doubt it. Cowboy programmers get hung up during testing when several 
difficult-to-find bugs crop up, and when their code needs to be enhanced it often 
leads to a major rewrite by them because they’re the only ones who understand 
their code [Amby].

• 80% of the lifetime cost of a piece of software goes to maintenance.

• Hardly any software is maintained for its whole life by the original author.

• Coding standards improve the readability of the software, allowing engineers to 
understand new code more quickly and thoroughly.

• If you ship your source code as a product, you need to make sure it is as well 
packaged and clean as any other product you create.

For the standard to work, everyone must conform to it.

1.3 Acknowledgments
This document is a modified version of the Code Conventions for the Java™ 
Programming Language [Sun]. In addition, many useful comments from The 
AmbySoft Inc. Coding Standards for Java [Amby] and Guidelines: C++ 
Programming [Rational] have been included.

Adapted with permission from CODE CONVENTIONS FOR THE JAVA™ 
PROGRAMMING LANGUAGE. Copyright 1995-1999 Sun Microsystems, Inc. All 
rights reserved.

1.4 References
[Amby] Name

Link
The AmbySoft Inc. Coding Standards for Java

http://www.ambysoft.com/javaCodingStandards.html

[Javadoc] Name
Link

Javadoc Tool Home Page
http://java.sun.com/j2se/javadoc/index.html

[Rational] Name
Link

Guidelines: C++ Programming
http://www.upedu.org/upedu/

[Sun] Name
Link

Code Conventions for the Java™ Programming Language
http://java.sun.com/docs/codeconv/index.html
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1.5 Principles
Clear, understandable Java source code is the primary goal of most of the 
conventions: clear, understandable source code being a major contributing factor 
to software reliability and maintainability. What is meant by clear and 
understandable code can be captured in the following three simple fundamental 
principles [Rational].

1.5.1 Minimal surprise
Over its lifetime, source code is read more often than it is written, especially 
specifications. Ideally, code should read like an English-language description of 
what is being done, with the added benefit that it executes. Programs are written 
more for people than for computers. Reading code is a complex mental process 
that can be eased by uniformity, also referred to in this guide as the minimal-
surprise principle. A uniform style across an entire project is a major reason for a 
team of software developers to agree on programming standards, and it should 
not be perceived as some kind of punishment or as an obstacle to creativity and 
productivity.

1.5.2 Single point of maintenance
Whenever possible, a design decision should be expressed at only one point in the 
source, and most of its consequences should be derived programmatically from 
this point. Violations of this principle greatly jeopardize maintainability and 
reliability, as well as understandability.

1.5.3 Minimal noise
Finally, as a major contribution to legibility, the minimal-noise principle is 
applied. That is, an effort is made to avoid cluttering the source code with visual 
"noise": bars, boxes, and other text with low information content or information 
that does not contribute to the understanding of the purpose of the software.
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2 Code Organization and Style

2.1 Packages
A package in Java is primarily used for managing name spaces. Java does also 
allow default “friendliness” among classes inside a package. So a Java package 
can be thought of as a container for related classes and interfaces. The grouping 
of classes into packages is an important design decision, which should be 
considered carefully before implementation.

2.1.1 Packaging approach
Packages can be organized based on a layer pattern with application-specific 
business logic forming the top layer of packages, general-purpose services 
occupying the second layer of packages, and protocol-specific, driver-specific and 
other low level functionality located in bottom layer of packages.

The layer pattern provides logical partitioning of packages with certain access 
rules between them. The layering restricts inter-package dependencies making 
the resulting system to be more loosely coupled and therefore more easily 
maintained.

Packages within a particular layer should only depend on packages within the 
same layer and in the next lower layer.  Failure to restrict dependencies causes 
architectural degradation and makes the system brittle and difficult to maintain. 

Exceptions include cases where packages need direct access to lower layer 
services. A conscious decision should be made on how to handle primitive 
services needed throughout the system, such as printing, sending messages, etc. 

Packages within the same layer should never contain cross-references between 
each other. Such dependencies indicate a flaw in the original rule, by which 
classes have been partitioned into packages.

Packages should not form deep hierarchies, but one layer of service packages 
under application-specific packages, and one layer of auxiliary packages under 
services, when applicable, should be sufficient.

2.1.2 Example of packaging
In Java Management Extensions (JMX™) based architecture, both application logic 
and general-purpose services are implemented as MBeans. In Tammi, each 
MBean, or a set of related MBeans, are located in their own package. Utility 
classes of MBeans are either in the same package or, if there is a large bunch of 
them, in one or more packages under the MBean package.

Utilities shared by several MBeans in different packages have been located in a 
separate utility package. The utility package contains one auxiliary level of 
packages grouping functionally related utilities into consistent sets.

Example
package org.norther.tammi.spray.*; // Web application layer.
package org.norther.tammi.core.*;  // General services layer.
package org.norther.tammi.acorn.*; // Common utilities layer.
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2.2 Source files
Each Java source file contains a single public class or interface. When private 
classes and interfaces are associated with a public class, you can put them in the 
same source file as the public class. The public class should be the first class or 
interface in the file.

Java source files have the following ordering:

• Beginning comments

• Package and import statements

• Class and interface declarations

2.2.1 Beginning comments
All source files should begin with a comment that lists a copyright notice. Note 
that the comment shoud be a documentation comment strating with /** to be 
recognized by automatic formatting tools.

Example
/**
 * Copyright (c) 2004 The Norther Organization - http://www.norther.org.
 *
 * Tammi is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * Tammi is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with Tammi; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

2.2.2 Package and import statements
The first non-comment line of most Java source files is a package statement. 
After that, import statements can follow. 

Example
package org.norther.tammmi.core.base;
import javax.management.MBeanServer;

2.2.3 Class and interface declarations
The class or interface declaration follows the import statements. The declaration 
should always begin with a javadoc [Javadoc] description of the purpose of the 
class or interface.

2.3 Code style
One way to improve the readability of a member function is to paragraph it, or in 
other words indent your code within the scope of a code block. Any code within 
braces, the { and } characters, forms a block.

Norther 2002 8 (28)
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Four spaces should be used as the unit of indentation. Tabs should not be used.

2.3.1 Indention of blocks
The compound or block statement delimiters, should be at the same level of 
indentation as surrounding statements (by implication, this means that {} are 
vertically aligned). Statements within the block should be indented with four 
spaces.

Even one line blocks should be enclosed between braces (e.g. if-else blocks).

Case labels of a switch statement should be indented by 1 indention level from 
the switch statement. Statements within the switch statement can then be 
indented by 2 indentation levels from the switch statement and by 1 indentation 
level from the case labels. 

Examples
if (true)
{     
    // Statement(s) within a block indented by 4 spaces.    
    foo(); 
}
else
{
    bar();
}
while (expression)
{
    statement();
}
switch (i)
{
    case 1:
        doSomething(); // Statements indented by 
        doSomething(); // 2 indentation levels from
        break;         // the switch statement itself.
    Case 2:
        //...
    default:
        //...
}

2.3.2 Indention of member function declarations
Place parameters of a member function on the same line as the member function 
name if they fit. Place each parameter of a long parameter list on a new line 
indented by one indention level. 

Example
public void someMethod(
    SomeType firstParameter,
    SomeOtherType secondParameter,
    StatusType andSubsequent);

2.3.3 Line length
Avoid lines longer than 80 characters, since they’re not handled well by many 
terminals and tools and are difficult to read.
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Notes

If the level of indentation causes deeply nested statements to drift too far to the 
right, and statements to extend much beyond the right margin, then it is 
probably a good time to consider breaking the code into smaller, more 
manageable, functions.

Examples for use in documentation should have a shorter line length - generally 
no more than 70 characters.

2.3.4 Wrapping lines
When an expression will not fit on a single line, break it according to these 
general principles:

• Break after a comma.

• Break before an operator.

• Prefer higher-level breaks to lower-level breaks.

• Align the new line with the beginning of the expression at the same level on the 
previous line.

If the above rules lead to confusing code or to code that’s squished up against the 
right margin, just indent 4 spaces instead.

Examples
someMethod(
    longExpression1, 
    longExpression2, 
    longExpression3,
    longExpression4, 
    longExpression5);
var = someMethod1(longExpression1,
    someMethod2(longExpression2,
        longExpression3));

Following are two examples of breaking an arithmetic expression. The first one is 
preferred, since the break occurs outside the parenthesized expression, which is 
at a higher level.

Examples
longName1 = longName2 * (longName3 + longName4 – longName5)
    + 4 * longname6;              // Prefer.
longName1 = longName2 * (longName3 + longName4
    - longName5) + 4 * longname6; // Avoid.

Line wrapping for if statements should generally use the same level rule, since (4 
space) indentation makes the statements difficult to read.

Examples
// Don’t use this indention.
if ((condition1 && condition2)
        || (condition3 && condition4)
            || !(condition5 && condition6)) 
{ 
    // Bad wraps.
    doSomethingAboutIt();
}
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// Use this indention instead.
if ((condition1 && condition2)
    || (condition3 && condition4)
    || !(condition5 && condition6)) 
{
    doSomethingAboutIt();
}

Below are three acceptable ways to format ternary expressions.

Examples
alpha = (aLongBooleanExpression) ? beta : gamma;
alpha = (aLongBooleanExpression)
    ? beta : gamma;
alpha = (aLongBooleanExpression)
    ? beta
    : gamma;

2.3.5 Blank spaces
A keyword followed by a parenthesis should be separated by a space.

Examples
while (true) 
{
    doLoop();
}
synchronized (this) 
{
    foo = bar;
}

Note that a blank space should not be used between a member function name 
and its opening parenthesis. This helps to distinguish keywords from member 
function calls.

A blank space should appear after commas in argument lists.

All binary operators except . should be separated from their operands by spaces. 
Blank spaces should never separate unary operators such as unary minus, 
increment (“++”), and decrement (“--”) from their operands. 

Examples
a += c + d;
a = (a + b) / (c * d);
while (d++ = s++) 
{
    n++;
}
prints("size is " + foo + "\n");

The expressions in a for statement should be separated by blank spaces. 

Example
for (expr1; expr2; expr3)
{
    doLoop();
}

Casts should be followed by a blank space. 
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Examples
myMethod((byte) aNum, (Object) x);
myMethod((int) (cp + 5), ((int) (i + 3)) + 1);
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3 Comments
Comments should [Rational]: 

• Supplement source code by explaining what is not obvious; they should not 
duplicate the language syntax or semantics.

• Help the reader to grasp the background concepts, the dependencies, and 
especially complex data encoding or algorithms.

• Highlight deviations from coding or design standards, the use of restricted 
features and special “tricks”.

3.1 General recommendations
Conform to the following recommendations [Rational]:

• Place comments near the code they are commenting upon and with the same 
level of indentation.

• Avoid end of line comments as they become often misaligned.

• Avoid visual noise, suck as vertical bars, closed frames or boxes. 

• Use blank lines to separate related blocks of source code rather than comment 
lines.

• Use an empty comment line, rather than an empty line, to separate comment 
paragraphs

• Avoid repeating program identifiers in comments, and replicating information 
found elsewhere - provide a pointer to the information instead. 

• Write self-documenting code rather than comments by choosing better names, 
using extra temporary variables, or re-structuring code. 

• Take care with style, syntax, and spelling in comments. 

• Use natural language comments rather than telegraphic, or cryptic style.

• Document why something is being done, not just what.

3.2 Types of comments
Java has three styles of comments: documentation (doc) comments start with /** 
and end with */, C-style comments which start with /* and end with */, and 
single-line comments that start with // and go until the end of the source-code 
line. Below is a summary of recommended use for each type of comment [Amby].

3.2.1 Documentation comments
Use doc comments immediately before declarations of interfaces, classes, 
member functions, and fields to document them. Doc comments are processed by 
javadoc, see the next chapter, to create external documentation for a class.

Example
/**
 * An input stream wrapper for reading partial streams of multipart
 * MIME messages as specified in RFC 1521.
 *
 * @author Ilkka Priha
 */
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3.2.2 C-style comments
Use C-style comments to document outlines of code that are no longer applicable, 
but that you want to keep just in case your users change their minds, or because 
you want to temporarily turn it off while debugging. Use it also to record 
modifications made for correcting specific bugs, or made by a programmer who is 
not the primary author of the class.

Example
/* 
This code was commented out by Foo Bar on June 4, 2001 because it
was replaced by the preceding code. Delete it after two years
if it is still not applicable.
... (the source code)
*/

3.2.3 Single line comments
Use single line comments internally within member functions to document 
business logic, sections of code, and declarations of temporary variables.

Example
// Note that listeners can't be removed by the broadcaster,
// because the server has wrapped them with its internal one.

3.3 Javadoc
Javadoc [Javadoc] is a tool from Sun Microsystems for generating API 
documentation in HTML format from doc comments in source code. Javadoc is 
used for documenting classes and member functions. 

3.3.1 Document classes and member functions
Although self-documenting code is preferred over comments, there is generally a 
need to provide information beyond an explanation of complicated parts of the 
code. The information that is needed is documentation of the following [Rational]: 

• The purpose of each class.

• The purpose of each member function.

• The meaning of each parameter of a member function, and pre- and post-
conditions on them, if any.

• The meaning of any return values; e.g., the meaning of a boolean return value 
for a non-predicate member function, that is, does a true value mean the 
member function was successful.

• Conditions under which exceptions are raised.

• Additional data accessed, especially if it is modified: important for member 
functions with side effects.

• Any limitations or additional information needed to properly use the class or 
member function.

• Any invariants or additional constraints that cannot be expressed by the 
language.
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3.3.2 General form of a doc comment
A doc comment is made up of two parts - a description followed by zero or more 
tags, with a blank line (containing a single asterisk (*)) between these two 
sections.

Example
/** 
 * This is the description part of a doc comment.
 *
 * @tag comment for the tag.
 */

The first line is indented to line up with the code below the comment, and starts 
with the begin-comment symbol (/**) followed by a return. 

Subsequent lines start with an asterisk (*). They are indented an additional space 
so the asterisks line up. A space separates the asterisk from the descriptive text 
or tag that follows it. 

Insert a blank comment line between the description and the list of tags, as 
shown. 

The description consists of one or more capitalized sentences ending to a period. 
The tag comment should be a non-capitalized sentence ending to a period.

The last line begins with the end-comment symbol (*/) indented so the asterisks 
line up and followed by a return. Note that the end-comment symbol contains 
only a single asterisk (*). 

Break any doc comment lines exceeding 80 characters in length, if possible. If 
you have more than one paragraph in the doc comment, separate the paragraphs 
with a <p> paragraph tag.

3.3.3 Descriptions
The first sentence of each doc comment should be a summary sentence, 
containing a concise but complete description of the item. This means the first 
sentence of each member, class, interface or package description. The javadoc 
tool copies this first sentence to the appropriate member, class/interface or 
package summary. This makes it important to write crisp and informative initial 
sentences that can stand on their own. This sentence ends at the first period that 
is followed by a blank, tab, or line terminator, or at the first tag.

3.3.4 Tag conventions
Tagged paragraphs identify certain information that has a routine structure, such 
as the intended purpose of each parameter of a member function, in a form that 
the documentation comment processor can easily marshal into standard 
typographical formats for purposes of presentation and cross-reference.

Different kinds of tagged paragraphs are available for class and interface 
declarations and for member function, field, and constructor declarations. At least 
the following tags should be used:

• @author, followed by the name of the author of the class (classes and 
interfaces only, required).

• @param, followed by the name and a short description of a member function 
parameter (member functions and constructors only, required for each 
parameter).
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• @return, followed by a short description of a returned value of a member 
function (member functions only, required for each return value).

• @throws, followed by the name of the exception class and a short description of 
the circumstances that cause the exception to be thrown (member functions 
and constructors only, required for each exception).

• @see, followed by a cross-reference to a class, interface, member function, 
constructor, field, or URL.

They should be included in the above order.

Multiple @author tags should be listed in chronological order. The creator of the 
class should be listed at the top. 

Multiple @param tags should be listed in argument-declaration order. This makes 
it easier to visually match the list to the declaration. 

Multiple @throws tags should be listed in some logical order or alphabetically.

Tag comments can be aligned vertically to start at the same level to improve 
readability.

Examples
/**
 * ContextFilterMBean loads tools available for templates into the context.
 * The tools are used from templates with implementation specific
 * references. E.g. Velocity templates refer to context tools with
 * <code>$name</code>, where name is the registration name of the tool.
 *
 * <p>Tools implementing the ContextBindingListener interface will be
 * notified when bound to the context or unbound from it.</p>
 *
 * <p>The tools are specified as properties using the following syntax:</p>
 *
 * <pre>
 *  ##
 *  # Global tools are visible to all templates for all requests.
 *  # The same instance of a global tool is shared by all clients
 *  # and the tool must be threadsafe.
 *  # global.'name' = 'class name'
 *  global.path = org.norther.tammi.spray.content.context.PathTool
 *  ##
 *  # Session tools are instantiated once for each user session, and are
 *  # stored into the session. Each session contains its own instance of
 *  # a session tool, but as the same session can be used by several
 *  # requests, the tool should be threadsafe.
 *  # session.'name' = 'class name'
 *  session.user = org.norther.tammi.spray.authenticator.context.UserTool
 *  ##
 *  # Request tools are instantiated once for each request. Each request
 *  # will get its own instance of a request tool and the tool needs not
 *  # to be threadsafe.
 *  # request.'name' = 'class name'
 *  request.page = org.norther.tammi.spray.content.context.PageTool
 * </pre>
 *
 * <p>Derived from <code>PullService</code>
 * in the Apache Jakarta Turbine project.</p>
 *
 * @author Jason van Zyl
 * @author Sean Legassick
 * @author Ilkka Priha
 */
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/**
 * Callback used by the relation service when an MBean referenced
 * in a role is unregistered. The relation service will call this
 * method to let the relation take action to reflect the impact
 * of such unregistration. The user is not expected to call this method.
 *
 * @param theObjName the object name of the unregistered Mbean.
 * @param theRoleName the name of role where the MBean is referenced.
 * @throws RoleNotFoundException if there is no role with the given name.
 * @throws InvalidRoleValueException if the value provided for the role is
 *             not valid.
 * @throws RelationNotFoundException if the relation has not been added in
 *             the service.
 * @throws RelationTypeNotFoundException if the relation type has not been
 *             declared.
 * @throws RelationServiceNotRegisteredException if the service is not
 *             registered.
 */
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4 Naming

4.1 Naming packages
There are several rules associated with the naming of packages. In order, these 
rules are [Amby]:

• Identifiers are separated by periods. For example, the package name java.awt 
is comprised of two identifiers, java and awt.

• The standard java distribution packages from Sun begin with the identifier 
“java” or “javax”. Sun has reserved this right so that the standard java 
packages are named in a consistent manner regardless of the vendor of your 
Java development environment.

• Global package names begin with the reversed Internet domain name for your 
organization, with the top-level domain type in lower case. The prefix should be 
one of the standard Internet top-level domain names (com, edu, gov, mil, net, 
org, or a country specific name).

• Package names should be in singular form.

Example
org.norther.tammi.spray.filter;

4.2 Naming classes
Class names should be nouns, in mixed case with the first letter of each internal 
word capitalized. Try to keep your class names simple and descriptive. 

Use whole words - avoid acronyms and abbreviations (unless the abbreviation is 
much more widely used than the long form, such as URL or HTML). Acronyms less 
than four characters long are written with capitals, otherwise capitalize only the 
first letter.

Class names should be in singular form.

Examples
URLDecoder
FileStream
String
HttpRequest

4.3 Naming interfaces
Interface names should be capitalized like class names. The preferred Java 
convention for the name of an interface is to use a descriptive adjective, such as 
Runnable or Cloneable, although descriptive nouns, such as Singleton or 
DataInput, can also be used. 

Note that an MBean interface always has the same name than the class 
implementing it suffixed with MBean.

Examples
Cloneable
LoggerMBean
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4.4 Naming member functions
Methods should be verbs, in mixed case with the first letter lowercase, with the 
first letter of each internal word capitalized. 

Examples
run()
runFast()

4.4.1 Naming accessor member functions
Getters are member functions that return the value of a field. You should prefix 
the word “get” to the name of the field, unless it is a boolean field and then you 
prefix “is” to the name of the field instead of get.

Setters, also known as mutators, are member functions that modify the values of 
a field. You should prefix the word “set” to the name of the field, regardless of the 
field type.

Examples
getFirstName()
setFirstName(String aName)
isAtEnd()
setAtEnd(boolean isAtEnd)

4.4.2 Naming constructors
Constructors are member functions that perform any necessary initialization when 
an object is first created. Constructors are always given the same name as their 
class. This naming convention is set by Sun and must be strictly adhered to.

4.5 Naming fields
You should use a full English descriptor to name your fields to make it obvious 
what the field represents. Fields that are collections, such as arrays or vectors, 
should be given names that are plural to indicate that they represent multiple 
values [Amby].

Example
firstName
zipCode
unitPrice
discountRate
orderItems

4.5.1 Naming constants 
In Java, constants, values that do not change, are typically implemented as static 
final fields of classes. The recognized convention is to use full English words, all in 
uppercase, with underscores between the words.

The main advantage of this convention is that it helps to distinguish constants 
from variables.

Examples
MINIMUM_BALANCE
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MAX_VALUE
DEFAULT_START_DATE

4.6 Naming variables
In general, local variables are named following the same conventions as used for 
fields, in other words use full English descriptors with the first letter of any non-
initial word in uppercase. The names should not conflict with names with greater 
scope, that is, avoid name hiding [Amby].

For the sake of convenience, however, this naming convention is relaxed for 
several specific types of local variable: 

• Streams 

• Loop counters 

• Exceptions 

4.6.1 Naming streams 
When there is a single input and/or output stream being opened, used, and then 
closed within a member function the common convention is to use “in” and “out” 
for the names of these streams, respectively. For a stream used for both input 
and output, the implication is to use the name “inOut”.

4.6.2 Naming loop counters 
Because loop counters are a very common use for local variables, and because it 
was acceptable in C/C++, in Java programming the use of “i”, “j”, or “k”, is 
acceptable for loop counters and iterators. If you use these names for loop 
counters, use them consistently.

4.6.3 Naming exception objects 
Because exception handling is also very common in Java coding the use of the 
letters “e” and “x” for a generic exception is considered acceptable.

4.6.4 Naming parameters 
Parameters should be named following the exact same conventions as for local 
variables. As with local variables, name hiding is an issue. 

Examples
customer
inventoryItem
photonTorpedo
in
x
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4.7 Do not "hide" names
Name hiding refers to the practice of naming a local variable, argument, or field 
the same (or similar) as that of another one of greater scope. For example, if you 
have a field called firstName do not create a local variable or parameter called 
firstName, or anything close to it like firstNames or fistName. This makes your 
code difficult to understand and prone to bugs because other developers, or you, 
will misread your code while they are modifying it and make difficult to detect 
errors [Amby].
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5 Declarations

5.1 Class declarations 
Classes should be declared in a consistent manner. The common approach is to 
declare a class in the order of visibility:

 1 public fields (accessors should be used instead)

 2 protected fields (accessors should be used instead)

 3 default fields (accessors should be used instead)

 4 private fields

 5 constructors

 6 finalize()

 7 public member functions

 8 protected member functions

 9 default member functions

 10 private member functions

Static members within each grouping should be listed first, followed by instance 
members. Within each of these two sub-groupings, accessor member functions 
should be listed first as pairs of corresponding getters and setters followed by 
other member functions in alphabetical order.

5.2 Minimize the public and protected interface 
One of the fundamentals of object-oriented design is to minimize the public 
interface of a class. Some of the reasons are presented below [Amby].

5.2.1 Learnability
To learn how to use a class you should only have to understand its public 
interface. The smaller the public interface, the easier a class is to learn. 

5.2.2 Reduced coupling
Whenever the instance of one class sends a message to an instance of another 
class, or directly to the class itself, the two classes become coupled. Minimizing 
the public interface implies that you are minimizing the opportunities for coupling. 

5.2.3 Greater flexibility
Whenever you want to change the way that a member function in your public 
interface is implemented, perhaps you want to modify what the member function 
returns, and then you potentially have to modify any code that invokes the 
member function. The smaller the public interface the greater the encapsulation 
and therefore the greater your flexibility.

5.3 Member function accessibility
For a good design where you minimize the coupling between classes, the general 
rule of thumb is to be as restrictive as possible when setting the visibility of a 
member function. If a member function does not have to be public then make it 
protected, and if it does not have to be protected then make it private [Amby].

Norther 2002 22 (28)



Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

Accessibility Description Proper Usage

public A public member function can 
be invoked by any other 
member function in any other 
object or class.

When the member function must 
be accessible by objects and 
classes outside of the class 
hierarchy in which the member 
function is defined.

protected A protected member function 
can be invoked by any member 
function in the class in which it 
is defined, any classes in the 
same package as that class, or 
any subclasses of that class.

When the member function 
provides behavior that is needed 
internally within the class 
hierarchy but not externally.

default No accessibility is indicated. 
This is called default or package 
accessibility, and is sometimes 
referred to as friendly 
accessibility. The member 
function is effectively public to 
all other classes within the same 
package, but private to classes 
external to the package.

This is an interesting feature, but 
be careful with its use. It can be 
used for building domain 
components, collections of 
classes that implement a 
cohesive business concept such 
as “Customer”, to restrict access 
to only the classes within the 
component/package.

private A private member function can 
only be invoked by other 
member functions in the class in 
which it is defined, but not in 
the subclasses.

When the member function 
provides behavior that is specific 
to the class. Private member 
functions are often the result of 
refactoring, also known as 
reorganizing, the behavior of 
other member functions within 
the class to encapsulate one 
specific behavior.

5.4 Field accessibility
When fields are declared protected there is the possibility of member functions in 
subclasses to directly access them, effectively increasing the coupling within a 
class hierarchy. This makes your classes more difficult to maintain and to 
enhance, therefore it should be avoided. Fields should never be accessed directly; 
instead accessor member functions should be used [Amby].
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Accessibility Description Proper Usage

public A public field can be accessed 
by any other member function 
in any other object or class.

Do not make fields public.

protected A protected field can be 
accessed by any member 
function in the class in which it 
is declared, any member 
functions defined in classes in 
the same package as that class, 
or by any member functions 
defined in subclasses of that 
class.

Do not make fields protected.

default A field without an access control 
modifier can be accessed by any 
member functions defined in 
classes in the same package as 
the class in which it is declared.

Do not use default accessibility.

private A private field can only be 
accessed by member functions 
in the class in which it is 
declared, but not in the 
subclasses.

All fields should be private and 
be accessed by getter and setter 
member functions (accessors).
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6 Expressions and Statements

6.1 Avoid nesting expressions too deeply
The level of nesting of an expression is defined as the number of nested sets of 
parentheses required to evaluate an expression from left to right if the rules of 
operator precedence were ignored. Too many levels of nesting make expressions 
harder to comprehend.

6.2 Specify the order of operations
A really easy way to improve the understandability of your code is to use 
parenthesis, also called "round brackets", to specify the exact order of operations 
in your Java code. If you have to know the order of operations for a language to 
understand your source code then something is seriously wrong. This is mostly an 
issue for logical comparisons where you AND and OR several other comparisons 
together. Note that if you use short, single command lines as suggested above 
then this really should not crop up as an issue.

6.3 Use accessor member functions
In addition to naming conventions, the maintainability of fields is achieved by the 
appropriate use of accessor member functions, member functions that provide the 
functionality to either update a field or to access its value. Accessor member 
functions come in two flavors: setters (also called mutators) and getters. A setter 
modifies the value of a variable, whereas a getter obtains it for you.

Although accessor member functions used to add overhead to your code, Java 
compilers are now optimized for their use, this is no longer true. Accessors help to 
hide the implementation details of your class. By having at most two control 
points from which a variable is accessed, one setter and one getter, you are able 
to increase the maintainability of your classes by minimizing the points at which 
changes need to be made.

6.4 Import classes explicitly
Avoid wildcards in import statements. Instead, import each class used by your 
class in a separate import statement. This practice adds a few lines to your code 
but makes it much easier to others (and yourself) to get an exact overview on the 
relationships between your code and other packages and classes.
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7 Error Handling and Exceptions
The general philosophy is to use exceptions only for errors: logic and 
programming errors, configuration errors, corrupted data, resource exhaustion, 
etc. The general rule is that the systems in normal condition and in the absence 
of overload or hardware failure should not raise any exceptions [Rational].

7.1 Use exceptions to handle errors
Use exceptions to handle logic and programming errors, configuration errors, 
corrupted data, and resource exhaustion. Report exceptions by the appropriate 
logging mechanism as early as possible, including at the point of raise.

7.2 Minimize the number of exceptions exported from a 
given abstraction
In large systems, having to handle a large number of exceptions at each level 
makes the code difficult to read and to maintain. Sometimes the exception 
processing dwarfs the normal processing.

There are several ways to minimize the number of exceptions: 

• Export only a few exceptions but provide "diagnosis" primitives that allow 
querying the faulty abstraction or the bad object for more detailed information 
about the nature of the problem that occurred.

• Add "exceptional" states to the objects, and provide primitives to check 
explicitly the validity of the objects.

7.3 Do not use exceptions for frequent, anticipated 
events
There are several inconveniences in using exceptions to represent conditions that 
are not clearly errors: 

• It is confusing.

• It usually forces some disruption in the flow of control that is more difficult to 
understand and to maintain.

• It makes the code more painful to debug, since most source-level debuggers 
flag all exceptions by default.

For instance, do not use an exception as some form of extra value returned by a 
function (like VALUE_NOT_FOUND in a search); use a procedure with an "out" 
parameter, or introduce a special value meaning NOT_FOUND, or pack the 
returned type in a record with a discriminant NOT_FOUND.

7.4 Do not use exceptions to implement control 
structures
This is a special case of the previous rule: exceptions should not be used as a 
form of "goto" statement.
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7.5 Make sure status codes have an appropriate value
When using status code returned by subprograms as an "out" parameter, always 
make sure a value is assigned to the "out" parameter by making this the first 
executable statement in the subprogram body. Systematically make all statuses a 
success by default or a failure by default. Think of all possible exits from the 
subprogram, including exception handlers.

7.6 Perform safety checks locally; do not expect your 
client to do so
That is, if a subprogram might produce erroneous output unless given proper 
input, install code in the subprogram to detect and report invalid input in a 
controlled manner. Do not rely on a comment that tells the client to pass proper 
values. It is virtually guaranteed that sooner or later that comment will be 
ignored, resulting in hard-to-debug errors if the invalid parameters are not 
detected.
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8 Summary
A brief summary of the standard conventions is presented below [Amby].

8.1 Java coding conventions
Most of the time it is more important to program for people, your fellow 
developers, than it is to program for the computer. Making your code 
understandable to others is of utmost importance.

8.2 Java documentation conventions
• Comments should add to the clarity of your code.

• If your program is not worth documenting, it probably is not worth running.

• Avoid decoration, i.e. do not use banner-like comments.

• Keep comments simple.

• Write the documentation before you write the code.

• Document why something is being done, not just what.

8.3 Java naming conventions
• Use full English descriptors.

• Use terminology applicable to the domain.

• Use lower case letters in general, but capitalize the first letter of class and 
interface names, as well as the first letter of any non-initial word.

• Use short forms sparingly, but if you do so then use them intelligently.

• Avoid long names (less than 15 characters is a good idea).

• Avoid names that are similar or differ only in case.

• Avoid underscores.
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