
norther.org

Tammi Application Framework

Java Coding Standard

Version 1.5

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

Revision History
Date Version Description Author

02.11.02 1.0 First version imp

15.12.02 1.1 Minor corrections map

03.07.03 1.2 Rational link corrected imp

25.09.03 1.3 Synced with Eclipse imp

19.10.03 1.4 Synced with Eclipse 3.0 imp

23.03.05 1.5 Updated skin imp

Norther 2002 2 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

Table of Contents
1 Introduction...5

1.1 Purpose...5

1.2 Scope...5

1.3 Acknowledgments..5

1.4 References..5

1.5 Principles..6

1.5.1 Minimal surprise..6
1.5.2 Single point of maintenance..6
1.5.3 Minimal noise..6

2 Code Organization and Style...7

2.1 Packages...7

2.1.1 Packaging approach...7
2.1.2 Example of packaging..7

2.2 Source files..8

2.2.1 Beginning comments..8
2.2.2 Package and import statements...8
2.2.3 Class and interface declarations...9

2.3 Code style...9

2.3.1 Indention of blocks..9
2.3.2 Indention of member function declarations...9
2.3.3 Line length..10
2.3.4 Wrapping lines..10
2.3.5 Blank spaces...11

3 Comments..13

3.1 General recommendations...13

3.2 Types of comments...13

3.2.1 Documentation comments...13
3.2.2 C-style comments..14
3.2.3 Single line comments...14

3.3 Javadoc...14

3.3.1 Document classes and member functions..14
3.3.2 General form of a doc comment...15
3.3.3 Descriptions..15
3.3.4 Tag conventions..15

4 Naming..18

4.1 Naming packages...18

4.2 Naming classes..18

4.3 Naming interfaces...18

4.4 Naming member functions...19

4.4.1 Naming accessor member functions...19
4.4.2 Naming constructors..19

Norther 2002 3 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

4.5 Naming fields...19

4.5.1 Naming constants ...19

4.6 Naming variables..20

4.6.1 Naming streams ...20
4.6.2 Naming loop counters ..20
4.6.3 Naming exception objects ..20
4.6.4 Naming parameters ...20

4.7 Do not "hide" names...21

5 Declarations...22

5.1 Class declarations ..22

5.2 Minimize the public and protected interface ...22

5.2.1 Learnability...22
5.2.2 Reduced coupling...22
5.2.3 Greater flexibility...22

5.3 Member function accessibility...22

5.4 Field accessibility..23

6 Expressions and Statements...25

6.1 Avoid nesting expressions too deeply..25

6.2 Specify the order of operations...25

6.3 Use accessor member functions..25

6.4 Import classes explicitly..25

7 Error Handling and Exceptions..26

7.1 Use exceptions to handle errors..26

7.2 Minimize the number of exceptions exported from a given abstraction...............26

7.3 Do not use exceptions for frequent, anticipated events....................................26

7.4 Do not use exceptions to implement control structures....................................26

7.5 Make sure status codes have an appropriate value..27

7.6 Perform safety checks locally; do not expect your client to do so......................27

8 Summary...28

8.1 Java coding conventions..28

8.2 Java documentation conventions..28

8.3 Java naming conventions...28

Norther 2002 4 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

1 Introduction

1.1 Purpose
This document describes the standard Java coding conventions applied in
development of the Tammi Application Framework. The goal has been to write
code that is easy to understand, maintain, reuse and enhance. By following a
common standard, the development team creates a consistent code base, which
significantly improves its productivity especially when the code base grows larger.

1.2 Scope
As code will exist after original developers have moved on to other projects, it is
important to ensure that transition of code to new developers goes on smoothly.
Code that is difficult to understand runs the risk of being scrapped and rewritten.

Inexperienced developers, and cowboys who do not know any better, will often
fight having to follow standards. They claim they can code faster if they do it their
own way. Pure hogwash. They MIGHT be able to get code out the door faster, but
I doubt it. Cowboy programmers get hung up during testing when several
difficult-to-find bugs crop up, and when their code needs to be enhanced it often
leads to a major rewrite by them because they’re the only ones who understand
their code [Amby].

• 80% of the lifetime cost of a piece of software goes to maintenance.

• Hardly any software is maintained for its whole life by the original author.

• Coding standards improve the readability of the software, allowing engineers to
understand new code more quickly and thoroughly.

• If you ship your source code as a product, you need to make sure it is as well
packaged and clean as any other product you create.

For the standard to work, everyone must conform to it.

1.3 Acknowledgments
This document is a modified version of the Code Conventions for the Java™
Programming Language [Sun]. In addition, many useful comments from The
AmbySoft Inc. Coding Standards for Java [Amby] and Guidelines: C++
Programming [Rational] have been included.

Adapted with permission from CODE CONVENTIONS FOR THE JAVA™
PROGRAMMING LANGUAGE. Copyright 1995-1999 Sun Microsystems, Inc. All
rights reserved.

1.4 References
[Amby] Name

Link
The AmbySoft Inc. Coding Standards for Java

http://www.ambysoft.com/javaCodingStandards.html

[Javadoc] Name
Link

Javadoc Tool Home Page
http://java.sun.com/j2se/javadoc/index.html

[Rational] Name
Link

Guidelines: C++ Programming
http://www.upedu.org/upedu/

[Sun] Name
Link

Code Conventions for the Java™ Programming Language
http://java.sun.com/docs/codeconv/index.html

Norther 2002 5 (28)

http://www.ambysoft.com/javaCodingStandards.html
http://java.sun.com/docs/codeconv/index.html
http://www.upedu.org/upedu/
http://java.sun.com/j2se/javadoc/index.html

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

1.5 Principles
Clear, understandable Java source code is the primary goal of most of the
conventions: clear, understandable source code being a major contributing factor
to software reliability and maintainability. What is meant by clear and
understandable code can be captured in the following three simple fundamental
principles [Rational].

1.5.1 Minimal surprise
Over its lifetime, source code is read more often than it is written, especially
specifications. Ideally, code should read like an English-language description of
what is being done, with the added benefit that it executes. Programs are written
more for people than for computers. Reading code is a complex mental process
that can be eased by uniformity, also referred to in this guide as the minimal-
surprise principle. A uniform style across an entire project is a major reason for a
team of software developers to agree on programming standards, and it should
not be perceived as some kind of punishment or as an obstacle to creativity and
productivity.

1.5.2 Single point of maintenance
Whenever possible, a design decision should be expressed at only one point in the
source, and most of its consequences should be derived programmatically from
this point. Violations of this principle greatly jeopardize maintainability and
reliability, as well as understandability.

1.5.3 Minimal noise
Finally, as a major contribution to legibility, the minimal-noise principle is
applied. That is, an effort is made to avoid cluttering the source code with visual
"noise": bars, boxes, and other text with low information content or information
that does not contribute to the understanding of the purpose of the software.

Norther 2002 6 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

2 Code Organization and Style

2.1 Packages
A package in Java is primarily used for managing name spaces. Java does also
allow default “friendliness” among classes inside a package. So a Java package
can be thought of as a container for related classes and interfaces. The grouping
of classes into packages is an important design decision, which should be
considered carefully before implementation.

2.1.1 Packaging approach
Packages can be organized based on a layer pattern with application-specific
business logic forming the top layer of packages, general-purpose services
occupying the second layer of packages, and protocol-specific, driver-specific and
other low level functionality located in bottom layer of packages.

The layer pattern provides logical partitioning of packages with certain access
rules between them. The layering restricts inter-package dependencies making
the resulting system to be more loosely coupled and therefore more easily
maintained.

Packages within a particular layer should only depend on packages within the
same layer and in the next lower layer. Failure to restrict dependencies causes
architectural degradation and makes the system brittle and difficult to maintain.

Exceptions include cases where packages need direct access to lower layer
services. A conscious decision should be made on how to handle primitive
services needed throughout the system, such as printing, sending messages, etc.

Packages within the same layer should never contain cross-references between
each other. Such dependencies indicate a flaw in the original rule, by which
classes have been partitioned into packages.

Packages should not form deep hierarchies, but one layer of service packages
under application-specific packages, and one layer of auxiliary packages under
services, when applicable, should be sufficient.

2.1.2 Example of packaging
In Java Management Extensions (JMX™) based architecture, both application logic
and general-purpose services are implemented as MBeans. In Tammi, each
MBean, or a set of related MBeans, are located in their own package. Utility
classes of MBeans are either in the same package or, if there is a large bunch of
them, in one or more packages under the MBean package.

Utilities shared by several MBeans in different packages have been located in a
separate utility package. The utility package contains one auxiliary level of
packages grouping functionally related utilities into consistent sets.

Example
package org.norther.tammi.spray.*; // Web application layer.
package org.norther.tammi.core.*; // General services layer.
package org.norther.tammi.acorn.*; // Common utilities layer.

Norther 2002 7 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

2.2 Source files
Each Java source file contains a single public class or interface. When private
classes and interfaces are associated with a public class, you can put them in the
same source file as the public class. The public class should be the first class or
interface in the file.

Java source files have the following ordering:

• Beginning comments

• Package and import statements

• Class and interface declarations

2.2.1 Beginning comments
All source files should begin with a comment that lists a copyright notice. Note
that the comment shoud be a documentation comment strating with /** to be
recognized by automatic formatting tools.

Example
/**
 * Copyright (c) 2004 The Norther Organization - http://www.norther.org.
 *
 * Tammi is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * Tammi is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with Tammi; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

2.2.2 Package and import statements
The first non-comment line of most Java source files is a package statement.
After that, import statements can follow.

Example
package org.norther.tammmi.core.base;
import javax.management.MBeanServer;

2.2.3 Class and interface declarations
The class or interface declaration follows the import statements. The declaration
should always begin with a javadoc [Javadoc] description of the purpose of the
class or interface.

2.3 Code style
One way to improve the readability of a member function is to paragraph it, or in
other words indent your code within the scope of a code block. Any code within
braces, the { and } characters, forms a block.

Norther 2002 8 (28)

http://www.norther.org/

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

Four spaces should be used as the unit of indentation. Tabs should not be used.

2.3.1 Indention of blocks
The compound or block statement delimiters, should be at the same level of
indentation as surrounding statements (by implication, this means that {} are
vertically aligned). Statements within the block should be indented with four
spaces.

Even one line blocks should be enclosed between braces (e.g. if-else blocks).

Case labels of a switch statement should be indented by 1 indention level from
the switch statement. Statements within the switch statement can then be
indented by 2 indentation levels from the switch statement and by 1 indentation
level from the case labels.

Examples
if (true)
{
 // Statement(s) within a block indented by 4 spaces.
 foo();
}
else
{
 bar();
}
while (expression)
{
 statement();
}
switch (i)
{
 case 1:
 doSomething(); // Statements indented by
 doSomething(); // 2 indentation levels from
 break; // the switch statement itself.
 Case 2:
 //...
 default:
 //...
}

2.3.2 Indention of member function declarations
Place parameters of a member function on the same line as the member function
name if they fit. Place each parameter of a long parameter list on a new line
indented by one indention level.

Example
public void someMethod(
 SomeType firstParameter,
 SomeOtherType secondParameter,
 StatusType andSubsequent);

2.3.3 Line length
Avoid lines longer than 80 characters, since they’re not handled well by many
terminals and tools and are difficult to read.

Norther 2002 9 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

Notes

If the level of indentation causes deeply nested statements to drift too far to the
right, and statements to extend much beyond the right margin, then it is
probably a good time to consider breaking the code into smaller, more
manageable, functions.

Examples for use in documentation should have a shorter line length - generally
no more than 70 characters.

2.3.4 Wrapping lines
When an expression will not fit on a single line, break it according to these
general principles:

• Break after a comma.

• Break before an operator.

• Prefer higher-level breaks to lower-level breaks.

• Align the new line with the beginning of the expression at the same level on the
previous line.

If the above rules lead to confusing code or to code that’s squished up against the
right margin, just indent 4 spaces instead.

Examples
someMethod(
 longExpression1,
 longExpression2,
 longExpression3,
 longExpression4,
 longExpression5);
var = someMethod1(longExpression1,
 someMethod2(longExpression2,
 longExpression3));

Following are two examples of breaking an arithmetic expression. The first one is
preferred, since the break occurs outside the parenthesized expression, which is
at a higher level.

Examples
longName1 = longName2 * (longName3 + longName4 – longName5)
 + 4 * longname6; // Prefer.
longName1 = longName2 * (longName3 + longName4
 - longName5) + 4 * longname6; // Avoid.

Line wrapping for if statements should generally use the same level rule, since (4
space) indentation makes the statements difficult to read.

Examples
// Don’t use this indention.
if ((condition1 && condition2)
 || (condition3 && condition4)
 || !(condition5 && condition6))
{
 // Bad wraps.
 doSomethingAboutIt();
}

Norther 2002 10 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

// Use this indention instead.
if ((condition1 && condition2)
 || (condition3 && condition4)
 || !(condition5 && condition6))
{
 doSomethingAboutIt();
}

Below are three acceptable ways to format ternary expressions.

Examples
alpha = (aLongBooleanExpression) ? beta : gamma;
alpha = (aLongBooleanExpression)
 ? beta : gamma;
alpha = (aLongBooleanExpression)
 ? beta
 : gamma;

2.3.5 Blank spaces
A keyword followed by a parenthesis should be separated by a space.

Examples
while (true)
{
 doLoop();
}
synchronized (this)
{
 foo = bar;
}

Note that a blank space should not be used between a member function name
and its opening parenthesis. This helps to distinguish keywords from member
function calls.

A blank space should appear after commas in argument lists.

All binary operators except . should be separated from their operands by spaces.
Blank spaces should never separate unary operators such as unary minus,
increment (“++”), and decrement (“--”) from their operands.

Examples
a += c + d;
a = (a + b) / (c * d);
while (d++ = s++)
{
 n++;
}
prints("size is " + foo + "\n");

The expressions in a for statement should be separated by blank spaces.

Example
for (expr1; expr2; expr3)
{
 doLoop();
}

Casts should be followed by a blank space.

Norther 2002 11 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

Examples
myMethod((byte) aNum, (Object) x);
myMethod((int) (cp + 5), ((int) (i + 3)) + 1);

Norther 2002 12 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

3 Comments
Comments should [Rational]:

• Supplement source code by explaining what is not obvious; they should not
duplicate the language syntax or semantics.

• Help the reader to grasp the background concepts, the dependencies, and
especially complex data encoding or algorithms.

• Highlight deviations from coding or design standards, the use of restricted
features and special “tricks”.

3.1 General recommendations
Conform to the following recommendations [Rational]:

• Place comments near the code they are commenting upon and with the same
level of indentation.

• Avoid end of line comments as they become often misaligned.

• Avoid visual noise, suck as vertical bars, closed frames or boxes.

• Use blank lines to separate related blocks of source code rather than comment
lines.

• Use an empty comment line, rather than an empty line, to separate comment
paragraphs

• Avoid repeating program identifiers in comments, and replicating information
found elsewhere - provide a pointer to the information instead.

• Write self-documenting code rather than comments by choosing better names,
using extra temporary variables, or re-structuring code.

• Take care with style, syntax, and spelling in comments.

• Use natural language comments rather than telegraphic, or cryptic style.

• Document why something is being done, not just what.

3.2 Types of comments
Java has three styles of comments: documentation (doc) comments start with /**
and end with */, C-style comments which start with /* and end with */, and
single-line comments that start with // and go until the end of the source-code
line. Below is a summary of recommended use for each type of comment [Amby].

3.2.1 Documentation comments
Use doc comments immediately before declarations of interfaces, classes,
member functions, and fields to document them. Doc comments are processed by
javadoc, see the next chapter, to create external documentation for a class.

Example
/**
 * An input stream wrapper for reading partial streams of multipart
 * MIME messages as specified in RFC 1521.
 *
 * @author Ilkka Priha
 */

Norther 2002 13 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

3.2.2 C-style comments
Use C-style comments to document outlines of code that are no longer applicable,
but that you want to keep just in case your users change their minds, or because
you want to temporarily turn it off while debugging. Use it also to record
modifications made for correcting specific bugs, or made by a programmer who is
not the primary author of the class.

Example
/*
This code was commented out by Foo Bar on June 4, 2001 because it
was replaced by the preceding code. Delete it after two years
if it is still not applicable.
... (the source code)
*/

3.2.3 Single line comments
Use single line comments internally within member functions to document
business logic, sections of code, and declarations of temporary variables.

Example
// Note that listeners can't be removed by the broadcaster,
// because the server has wrapped them with its internal one.

3.3 Javadoc
Javadoc [Javadoc] is a tool from Sun Microsystems for generating API
documentation in HTML format from doc comments in source code. Javadoc is
used for documenting classes and member functions.

3.3.1 Document classes and member functions
Although self-documenting code is preferred over comments, there is generally a
need to provide information beyond an explanation of complicated parts of the
code. The information that is needed is documentation of the following [Rational]:

• The purpose of each class.

• The purpose of each member function.

• The meaning of each parameter of a member function, and pre- and post-
conditions on them, if any.

• The meaning of any return values; e.g., the meaning of a boolean return value
for a non-predicate member function, that is, does a true value mean the
member function was successful.

• Conditions under which exceptions are raised.

• Additional data accessed, especially if it is modified: important for member
functions with side effects.

• Any limitations or additional information needed to properly use the class or
member function.

• Any invariants or additional constraints that cannot be expressed by the
language.

Norther 2002 14 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

3.3.2 General form of a doc comment
A doc comment is made up of two parts - a description followed by zero or more
tags, with a blank line (containing a single asterisk (*)) between these two
sections.

Example
/**
 * This is the description part of a doc comment.
 *
 * @tag comment for the tag.
 */

The first line is indented to line up with the code below the comment, and starts
with the begin-comment symbol (/**) followed by a return.

Subsequent lines start with an asterisk (*). They are indented an additional space
so the asterisks line up. A space separates the asterisk from the descriptive text
or tag that follows it.

Insert a blank comment line between the description and the list of tags, as
shown.

The description consists of one or more capitalized sentences ending to a period.
The tag comment should be a non-capitalized sentence ending to a period.

The last line begins with the end-comment symbol (*/) indented so the asterisks
line up and followed by a return. Note that the end-comment symbol contains
only a single asterisk (*).

Break any doc comment lines exceeding 80 characters in length, if possible. If
you have more than one paragraph in the doc comment, separate the paragraphs
with a <p> paragraph tag.

3.3.3 Descriptions
The first sentence of each doc comment should be a summary sentence,
containing a concise but complete description of the item. This means the first
sentence of each member, class, interface or package description. The javadoc
tool copies this first sentence to the appropriate member, class/interface or
package summary. This makes it important to write crisp and informative initial
sentences that can stand on their own. This sentence ends at the first period that
is followed by a blank, tab, or line terminator, or at the first tag.

3.3.4 Tag conventions
Tagged paragraphs identify certain information that has a routine structure, such
as the intended purpose of each parameter of a member function, in a form that
the documentation comment processor can easily marshal into standard
typographical formats for purposes of presentation and cross-reference.

Different kinds of tagged paragraphs are available for class and interface
declarations and for member function, field, and constructor declarations. At least
the following tags should be used:

• @author, followed by the name of the author of the class (classes and
interfaces only, required).

• @param, followed by the name and a short description of a member function
parameter (member functions and constructors only, required for each
parameter).

Norther 2002 15 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

• @return, followed by a short description of a returned value of a member
function (member functions only, required for each return value).

• @throws, followed by the name of the exception class and a short description of
the circumstances that cause the exception to be thrown (member functions
and constructors only, required for each exception).

• @see, followed by a cross-reference to a class, interface, member function,
constructor, field, or URL.

They should be included in the above order.

Multiple @author tags should be listed in chronological order. The creator of the
class should be listed at the top.

Multiple @param tags should be listed in argument-declaration order. This makes
it easier to visually match the list to the declaration.

Multiple @throws tags should be listed in some logical order or alphabetically.

Tag comments can be aligned vertically to start at the same level to improve
readability.

Examples
/**
 * ContextFilterMBean loads tools available for templates into the context.
 * The tools are used from templates with implementation specific
 * references. E.g. Velocity templates refer to context tools with
 * <code>$name</code>, where name is the registration name of the tool.
 *
 * <p>Tools implementing the ContextBindingListener interface will be
 * notified when bound to the context or unbound from it.</p>
 *
 * <p>The tools are specified as properties using the following syntax:</p>
 *
 * <pre>
 * ##
 * # Global tools are visible to all templates for all requests.
 * # The same instance of a global tool is shared by all clients
 * # and the tool must be threadsafe.
 * # global.'name' = 'class name'
 * global.path = org.norther.tammi.spray.content.context.PathTool
 * ##
 * # Session tools are instantiated once for each user session, and are
 * # stored into the session. Each session contains its own instance of
 * # a session tool, but as the same session can be used by several
 * # requests, the tool should be threadsafe.
 * # session.'name' = 'class name'
 * session.user = org.norther.tammi.spray.authenticator.context.UserTool
 * ##
 * # Request tools are instantiated once for each request. Each request
 * # will get its own instance of a request tool and the tool needs not
 * # to be threadsafe.
 * # request.'name' = 'class name'
 * request.page = org.norther.tammi.spray.content.context.PageTool
 * </pre>
 *
 * <p>Derived from <code>PullService</code>
 * in the Apache Jakarta Turbine project.</p>
 *
 * @author Jason van Zyl
 * @author Sean Legassick
 * @author Ilkka Priha
 */

Norther 2002 16 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

/**
 * Callback used by the relation service when an MBean referenced
 * in a role is unregistered. The relation service will call this
 * method to let the relation take action to reflect the impact
 * of such unregistration. The user is not expected to call this method.
 *
 * @param theObjName the object name of the unregistered Mbean.
 * @param theRoleName the name of role where the MBean is referenced.
 * @throws RoleNotFoundException if there is no role with the given name.
 * @throws InvalidRoleValueException if the value provided for the role is
 * not valid.
 * @throws RelationNotFoundException if the relation has not been added in
 * the service.
 * @throws RelationTypeNotFoundException if the relation type has not been
 * declared.
 * @throws RelationServiceNotRegisteredException if the service is not
 * registered.
 */

Norther 2002 17 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

4 Naming

4.1 Naming packages
There are several rules associated with the naming of packages. In order, these
rules are [Amby]:

• Identifiers are separated by periods. For example, the package name java.awt
is comprised of two identifiers, java and awt.

• The standard java distribution packages from Sun begin with the identifier
“java” or “javax”. Sun has reserved this right so that the standard java
packages are named in a consistent manner regardless of the vendor of your
Java development environment.

• Global package names begin with the reversed Internet domain name for your
organization, with the top-level domain type in lower case. The prefix should be
one of the standard Internet top-level domain names (com, edu, gov, mil, net,
org, or a country specific name).

• Package names should be in singular form.

Example
org.norther.tammi.spray.filter;

4.2 Naming classes
Class names should be nouns, in mixed case with the first letter of each internal
word capitalized. Try to keep your class names simple and descriptive.

Use whole words - avoid acronyms and abbreviations (unless the abbreviation is
much more widely used than the long form, such as URL or HTML). Acronyms less
than four characters long are written with capitals, otherwise capitalize only the
first letter.

Class names should be in singular form.

Examples
URLDecoder
FileStream
String
HttpRequest

4.3 Naming interfaces
Interface names should be capitalized like class names. The preferred Java
convention for the name of an interface is to use a descriptive adjective, such as
Runnable or Cloneable, although descriptive nouns, such as Singleton or
DataInput, can also be used.

Note that an MBean interface always has the same name than the class
implementing it suffixed with MBean.

Examples
Cloneable
LoggerMBean

Norther 2002 18 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

4.4 Naming member functions
Methods should be verbs, in mixed case with the first letter lowercase, with the
first letter of each internal word capitalized.

Examples
run()
runFast()

4.4.1 Naming accessor member functions
Getters are member functions that return the value of a field. You should prefix
the word “get” to the name of the field, unless it is a boolean field and then you
prefix “is” to the name of the field instead of get.

Setters, also known as mutators, are member functions that modify the values of
a field. You should prefix the word “set” to the name of the field, regardless of the
field type.

Examples
getFirstName()
setFirstName(String aName)
isAtEnd()
setAtEnd(boolean isAtEnd)

4.4.2 Naming constructors
Constructors are member functions that perform any necessary initialization when
an object is first created. Constructors are always given the same name as their
class. This naming convention is set by Sun and must be strictly adhered to.

4.5 Naming fields
You should use a full English descriptor to name your fields to make it obvious
what the field represents. Fields that are collections, such as arrays or vectors,
should be given names that are plural to indicate that they represent multiple
values [Amby].

Example
firstName
zipCode
unitPrice
discountRate
orderItems

4.5.1 Naming constants
In Java, constants, values that do not change, are typically implemented as static
final fields of classes. The recognized convention is to use full English words, all in
uppercase, with underscores between the words.

The main advantage of this convention is that it helps to distinguish constants
from variables.

Examples
MINIMUM_BALANCE

Norther 2002 19 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

MAX_VALUE
DEFAULT_START_DATE

4.6 Naming variables
In general, local variables are named following the same conventions as used for
fields, in other words use full English descriptors with the first letter of any non-
initial word in uppercase. The names should not conflict with names with greater
scope, that is, avoid name hiding [Amby].

For the sake of convenience, however, this naming convention is relaxed for
several specific types of local variable:

• Streams

• Loop counters

• Exceptions

4.6.1 Naming streams
When there is a single input and/or output stream being opened, used, and then
closed within a member function the common convention is to use “in” and “out”
for the names of these streams, respectively. For a stream used for both input
and output, the implication is to use the name “inOut”.

4.6.2 Naming loop counters
Because loop counters are a very common use for local variables, and because it
was acceptable in C/C++, in Java programming the use of “i”, “j”, or “k”, is
acceptable for loop counters and iterators. If you use these names for loop
counters, use them consistently.

4.6.3 Naming exception objects
Because exception handling is also very common in Java coding the use of the
letters “e” and “x” for a generic exception is considered acceptable.

4.6.4 Naming parameters
Parameters should be named following the exact same conventions as for local
variables. As with local variables, name hiding is an issue.

Examples
customer
inventoryItem
photonTorpedo
in
x

Norther 2002 20 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

4.7 Do not "hide" names
Name hiding refers to the practice of naming a local variable, argument, or field
the same (or similar) as that of another one of greater scope. For example, if you
have a field called firstName do not create a local variable or parameter called
firstName, or anything close to it like firstNames or fistName. This makes your
code difficult to understand and prone to bugs because other developers, or you,
will misread your code while they are modifying it and make difficult to detect
errors [Amby].

Norther 2002 21 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

5 Declarations

5.1 Class declarations
Classes should be declared in a consistent manner. The common approach is to
declare a class in the order of visibility:

 1 public fields (accessors should be used instead)

 2 protected fields (accessors should be used instead)

 3 default fields (accessors should be used instead)

 4 private fields

 5 constructors

 6 finalize()

 7 public member functions

 8 protected member functions

 9 default member functions

 10 private member functions

Static members within each grouping should be listed first, followed by instance
members. Within each of these two sub-groupings, accessor member functions
should be listed first as pairs of corresponding getters and setters followed by
other member functions in alphabetical order.

5.2 Minimize the public and protected interface
One of the fundamentals of object-oriented design is to minimize the public
interface of a class. Some of the reasons are presented below [Amby].

5.2.1 Learnability
To learn how to use a class you should only have to understand its public
interface. The smaller the public interface, the easier a class is to learn.

5.2.2 Reduced coupling
Whenever the instance of one class sends a message to an instance of another
class, or directly to the class itself, the two classes become coupled. Minimizing
the public interface implies that you are minimizing the opportunities for coupling.

5.2.3 Greater flexibility
Whenever you want to change the way that a member function in your public
interface is implemented, perhaps you want to modify what the member function
returns, and then you potentially have to modify any code that invokes the
member function. The smaller the public interface the greater the encapsulation
and therefore the greater your flexibility.

5.3 Member function accessibility
For a good design where you minimize the coupling between classes, the general
rule of thumb is to be as restrictive as possible when setting the visibility of a
member function. If a member function does not have to be public then make it
protected, and if it does not have to be protected then make it private [Amby].

Norther 2002 22 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

Accessibility Description Proper Usage

public A public member function can
be invoked by any other
member function in any other
object or class.

When the member function must
be accessible by objects and
classes outside of the class
hierarchy in which the member
function is defined.

protected A protected member function
can be invoked by any member
function in the class in which it
is defined, any classes in the
same package as that class, or
any subclasses of that class.

When the member function
provides behavior that is needed
internally within the class
hierarchy but not externally.

default No accessibility is indicated.
This is called default or package
accessibility, and is sometimes
referred to as friendly
accessibility. The member
function is effectively public to
all other classes within the same
package, but private to classes
external to the package.

This is an interesting feature, but
be careful with its use. It can be
used for building domain
components, collections of
classes that implement a
cohesive business concept such
as “Customer”, to restrict access
to only the classes within the
component/package.

private A private member function can
only be invoked by other
member functions in the class in
which it is defined, but not in
the subclasses.

When the member function
provides behavior that is specific
to the class. Private member
functions are often the result of
refactoring, also known as
reorganizing, the behavior of
other member functions within
the class to encapsulate one
specific behavior.

5.4 Field accessibility
When fields are declared protected there is the possibility of member functions in
subclasses to directly access them, effectively increasing the coupling within a
class hierarchy. This makes your classes more difficult to maintain and to
enhance, therefore it should be avoided. Fields should never be accessed directly;
instead accessor member functions should be used [Amby].

Norther 2002 23 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

Accessibility Description Proper Usage

public A public field can be accessed
by any other member function
in any other object or class.

Do not make fields public.

protected A protected field can be
accessed by any member
function in the class in which it
is declared, any member
functions defined in classes in
the same package as that class,
or by any member functions
defined in subclasses of that
class.

Do not make fields protected.

default A field without an access control
modifier can be accessed by any
member functions defined in
classes in the same package as
the class in which it is declared.

Do not use default accessibility.

private A private field can only be
accessed by member functions
in the class in which it is
declared, but not in the
subclasses.

All fields should be private and
be accessed by getter and setter
member functions (accessors).

Norther 2002 24 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

6 Expressions and Statements

6.1 Avoid nesting expressions too deeply
The level of nesting of an expression is defined as the number of nested sets of
parentheses required to evaluate an expression from left to right if the rules of
operator precedence were ignored. Too many levels of nesting make expressions
harder to comprehend.

6.2 Specify the order of operations
A really easy way to improve the understandability of your code is to use
parenthesis, also called "round brackets", to specify the exact order of operations
in your Java code. If you have to know the order of operations for a language to
understand your source code then something is seriously wrong. This is mostly an
issue for logical comparisons where you AND and OR several other comparisons
together. Note that if you use short, single command lines as suggested above
then this really should not crop up as an issue.

6.3 Use accessor member functions
In addition to naming conventions, the maintainability of fields is achieved by the
appropriate use of accessor member functions, member functions that provide the
functionality to either update a field or to access its value. Accessor member
functions come in two flavors: setters (also called mutators) and getters. A setter
modifies the value of a variable, whereas a getter obtains it for you.

Although accessor member functions used to add overhead to your code, Java
compilers are now optimized for their use, this is no longer true. Accessors help to
hide the implementation details of your class. By having at most two control
points from which a variable is accessed, one setter and one getter, you are able
to increase the maintainability of your classes by minimizing the points at which
changes need to be made.

6.4 Import classes explicitly
Avoid wildcards in import statements. Instead, import each class used by your
class in a separate import statement. This practice adds a few lines to your code
but makes it much easier to others (and yourself) to get an exact overview on the
relationships between your code and other packages and classes.

Norther 2002 25 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

7 Error Handling and Exceptions
The general philosophy is to use exceptions only for errors: logic and
programming errors, configuration errors, corrupted data, resource exhaustion,
etc. The general rule is that the systems in normal condition and in the absence
of overload or hardware failure should not raise any exceptions [Rational].

7.1 Use exceptions to handle errors
Use exceptions to handle logic and programming errors, configuration errors,
corrupted data, and resource exhaustion. Report exceptions by the appropriate
logging mechanism as early as possible, including at the point of raise.

7.2 Minimize the number of exceptions exported from a
given abstraction
In large systems, having to handle a large number of exceptions at each level
makes the code difficult to read and to maintain. Sometimes the exception
processing dwarfs the normal processing.

There are several ways to minimize the number of exceptions:

• Export only a few exceptions but provide "diagnosis" primitives that allow
querying the faulty abstraction or the bad object for more detailed information
about the nature of the problem that occurred.

• Add "exceptional" states to the objects, and provide primitives to check
explicitly the validity of the objects.

7.3 Do not use exceptions for frequent, anticipated
events
There are several inconveniences in using exceptions to represent conditions that
are not clearly errors:

• It is confusing.

• It usually forces some disruption in the flow of control that is more difficult to
understand and to maintain.

• It makes the code more painful to debug, since most source-level debuggers
flag all exceptions by default.

For instance, do not use an exception as some form of extra value returned by a
function (like VALUE_NOT_FOUND in a search); use a procedure with an "out"
parameter, or introduce a special value meaning NOT_FOUND, or pack the
returned type in a record with a discriminant NOT_FOUND.

7.4 Do not use exceptions to implement control
structures
This is a special case of the previous rule: exceptions should not be used as a
form of "goto" statement.

Norther 2002 26 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

7.5 Make sure status codes have an appropriate value
When using status code returned by subprograms as an "out" parameter, always
make sure a value is assigned to the "out" parameter by making this the first
executable statement in the subprogram body. Systematically make all statuses a
success by default or a failure by default. Think of all possible exits from the
subprogram, including exception handlers.

7.6 Perform safety checks locally; do not expect your
client to do so
That is, if a subprogram might produce erroneous output unless given proper
input, install code in the subprogram to detect and report invalid input in a
controlled manner. Do not rely on a comment that tells the client to pass proper
values. It is virtually guaranteed that sooner or later that comment will be
ignored, resulting in hard-to-debug errors if the invalid parameters are not
detected.

Norther 2002 27 (28)

Tammi Application Framework Version 1.5
Java Coding Standard 13.01.2006

8 Summary
A brief summary of the standard conventions is presented below [Amby].

8.1 Java coding conventions
Most of the time it is more important to program for people, your fellow
developers, than it is to program for the computer. Making your code
understandable to others is of utmost importance.

8.2 Java documentation conventions
• Comments should add to the clarity of your code.

• If your program is not worth documenting, it probably is not worth running.

• Avoid decoration, i.e. do not use banner-like comments.

• Keep comments simple.

• Write the documentation before you write the code.

• Document why something is being done, not just what.

8.3 Java naming conventions
• Use full English descriptors.

• Use terminology applicable to the domain.

• Use lower case letters in general, but capitalize the first letter of class and
interface names, as well as the first letter of any non-initial word.

• Use short forms sparingly, but if you do so then use them intelligently.

• Avoid long names (less than 15 characters is a good idea).

• Avoid names that are similar or differ only in case.

• Avoid underscores.

Norther 2002 28 (28)

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Acknowledgments
	1.4 References
	1.5 Principles
	1.5.1 Minimal surprise
	1.5.2 Single point of maintenance
	1.5.3 Minimal noise

	2 Code Organization and Style
	2.1 Packages
	2.1.1 Packaging approach
	2.1.2 Example of packaging

	2.2 Source files
	2.2.1 Beginning comments
	2.2.2 Package and import statements
	2.2.3 Class and interface declarations

	2.3 Code style
	2.3.1 Indention of blocks
	2.3.2 Indention of member function declarations
	2.3.3 Line length
	2.3.4 Wrapping lines
	2.3.5 Blank spaces

	3 Comments
	3.1 General recommendations
	3.2 Types of comments
	3.2.1 Documentation comments
	3.2.2 C-style comments
	3.2.3 Single line comments

	3.3 Javadoc
	3.3.1 Document classes and member functions
	3.3.2 General form of a doc comment
	3.3.3 Descriptions
	3.3.4 Tag conventions

	4 Naming
	4.1 Naming packages
	4.2 Naming classes
	4.3 Naming interfaces
	4.4 Naming member functions
	4.4.1 Naming accessor member functions
	4.4.2 Naming constructors

	4.5 Naming fields
	4.5.1 Naming constants

	4.6 Naming variables
	4.6.1 Naming streams
	4.6.2 Naming loop counters
	4.6.3 Naming exception objects
	4.6.4 Naming parameters

	4.7 Do not "hide" names

	5 Declarations
	5.1 Class declarations
	5.2 Minimize the public and protected interface
	5.2.1 Learnability
	5.2.2 Reduced coupling
	5.2.3 Greater flexibility

	5.3 Member function accessibility
	5.4 Field accessibility

	6 Expressions and Statements
	6.1 Avoid nesting expressions too deeply
	6.2 Specify the order of operations
	6.3 Use accessor member functions
	6.4 Import classes explicitly

	7 Error Handling and Exceptions
	7.1 Use exceptions to handle errors
	7.2 Minimize the number of exceptions exported from a given abstraction
	7.3 Do not use exceptions for frequent, anticipated events
	7.4 Do not use exceptions to implement control structures
	7.5 Make sure status codes have an appropriate value
	7.6 Perform safety checks locally; do not expect your client to do so

	8 Summary
	8.1 Java coding conventions
	8.2 Java documentation conventions
	8.3 Java naming conventions

